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CHAPTER 1. INTRODUCTION

Modeling the kinetilcs of atomic or molecular processes
has long been of interest to chemists and physilcists alike.
In particular, models describing molecular or atomic events,
such as chemical or physical changes in state which occur at
discrete sites on a regular periodic lattice, have been
studied since the early part of this century. Most of the
model studles reported in the literature have been devoted
to the equilibrium statistical mechanilcs investigations.
These studies span a wide range of disciplines including
polymer chemistry, surface chemlstry, the lattice theory of
solutions and many. others. However, there has also been
considerable interest i1n describing the nonequilibrium or
kinetlc behavior of lattice systems. Kinetic lattice models
have been applied to a diverse selection of problems of
current interest in the physical and blological sciences
.such as the catalytic activity of metal or metal oxide
surfaces (1), the characteristics of spiln-lattice systems

(2), and the structure and conformation of polymer molecules

(3).

An Overview of Lattice Kilneties

We open our discussion of kinetiec lattice models with an
~overview of the physical concepts and the mathematical for-

malism used in the description of kilnetic lattice processes.



One of the first kinetic models of a lattice process
was reported in 1918 by I. Langmuir (4) in connection with
his study of the rate of heat loss from a hot tungsten
filament in an ambient atmosphere of hydrogen gas. In the
model Langmuir considers, molecules from the gas are assumed
to collide randomly with the lattice with the possibility
that they can be adsorbed onto vacant éites at a rate
determined by the rate constant, k, and the gas pressure, P.
Adsorbed molecules can be desorbed from the surface at a
rate determined by the rate constant, k'. In this model each
adsorbed molecule 1s assumed to occupy a single site, with
only one molecule being allowed per site, and there 1is no
interaction between adsorbed molecules. Thus, neighboring
adsorption events are assumed to have no effect on the
probability of adsorption at a site, and the geometry of the
iattice i1s unimportant. The kinetic equation for this model
can be written as |

@ = - - t
ol kP(1-0) k'6, : (1.1)
where 6 1s the covering fraction (1.9!, the fraction of

sites occupied). This equation has thé solution

6 = kP ~(KP+k')t
kP+k'[% " ° J ’ (1-2)

which reduces to the equilibrium distribution

8 = HP

T o H o= k/K', | (1.3)



as t»+», The quantity H is a function of temperature, but not
pressure. Equation 1.3 is the well-known Langmulr isotherm.
Even though this model is simple, it affords insight into the
‘nature of the adsorption problem and thus 1t has become a
cornerstone in the development of theories of adsorption and
other lattice processes.

The Langmuir moael is an example of a model which we
term reversible and noninteracting. By reversible we mean
that both adsorption and desorption occur. Using a
terminology more suited to general applications, we say that
both a transition and its reverse can occur at a site 1n a
reversible model. By noninteracting we mean that an event
occurring at a site has no influence on what happens at other
sites.

Now suppose that the rate constaﬁt k' is small so that
desorption is an unimportant process on the time scale of

interest. Then Egns. 1.1l and 1.2 reduce to

as _

gt = kP(1-0), | (1.4)
and

0 = 1 - o kPt (1.5)

Clearly, no equilibrium can be established now and the
lattice saturates at 6=1 as t-+», A model such as this,
where the reverse transition does not occur (and therefore
no equilibrium is established and the forward process

continues until saturation), we refer to as an irreversible



model. Most of the models discussed In this thesis are of
this kind.

Let us further extend our considerations to include
cases where the condition of one site can influence what
happens at a neighboring site. We term models describing
such cases as 1lnteracting. It is convenient at this stage
to make the somewhat artificilal distinction between an
interaction which prohibits an event at a neighboring site,
which we call a blocking interaction, and an interaction
@hich Influences the rate of transition at a neighboring
site, but does not prohibit transitions, which we call a
cooperative interaction. A simple but important example of
a blocking interaction is found in the irreversible chemi-
sorption of homonuclear diatomlc molecules. In this case,
it 1is convenlent to discuss the adsorptlon process by
considering two different lattices. The first 1s the so-
called "atomlc" lattice. Each atom of an adsorbed diatomic
molecule occupies a single site on this lattice. If we
assume that the mechanism of the adsorption is such that the
two atoms from a single molecule must occupy adjacent sites,
then the point between these two sites can be thought of as
a lattice site on a conjugate lattice which we call the
"molecular" lattice. Sites on the molecular lattice are
occupied by adsorbed molecules. Althoﬁgh it might appear
that the atomic lattlce 1s the more physical of the two, in



a sense the molecular lattice i1s more useful from a
theoretical point of view. This 1s because each adsorption
event takes place on a single molecular lattice site whereas
the same event involves two sites on the atomic lattice.
Since two adjacent molecular sites have a common atomic
slte, and each atomic site can only be singly cccupiled,
adsorption on one molecular site precludes adsorption on a
neighboring moiecular site. This is what we mean by a
blocking potential. In the case at hand, an adsorption
event blocks an evenﬁ'only on the first nearest neighbor
molecular sites, and hence we refer to thls event as having
a 1lst n.n. blocking potential. By obvious extenslon we can
also have 2nd n.n., 3rd n.n., and etc. blocking potentials.
Unlike the Langmuir case, the geometry of the lattlce is
important when an adsorption event at one site can influence
the probabllity of adsorption at another site. The lattices
we conslider in most of our discussions are linear.

Since the chemisorption problem discussed above is
assumed to be irreversible, adsorption continues untill the
lattice saturates (l1.e., until there are no two adjacent
atomic sites or, in other words, until there is no molecular
site on which adsorption can occur). However, because of
the random nature of the process, there will be 1solated,
vacant sites remaining at saturation.. In fact, on an

infinite linear lattilce the fraction of sites remaining



‘vacant 1is e—2. We refer to this result often in this thesis
and explicitly derive it in Chapter 2.

The specific model discussed above is called the dimer
problem and is of‘central importance throughout this thesls.
Although we have introduced the dimer problem in the context
of irreversible chemisorption, it arises in other physical
contexts. For example, in a classic paper, Flory (5) |
utilizes the dimer model to Investigate the condensation of
adjacent substituent ketone groups on the polymer poly-

(methyl-vinyl)ketone. Equation 1.6 illustrates the reaction.

~CH2—?H—CH2—fH—CH2—?H— —_— —CHZ—?H—CHg—?H—CHE-CH— + H20
C=0 C=0 Cc=0 C C C=0 (1.6)
(IJH (llH | H CH/ Na” N |
3 3 C 3 3 CH 0 CH3

The random reéction of pairs of adjacent ketone groups élong
the chain leaves a distribution of isdlated, unreacted
ketone groups, in analogy to the dimer adsorption problem.
Flory finds the distribution of unreacted groups on a chain
of length N at saturation by solving a sequence of finite
difference equations; Of course, in the 1limlt as N»w, the
fraction of unreacted groups approaches the previously cited

2

result of e"°. 1In the terminology previously introduced,

the carbon atoms of the polymer backbone to which the ketone
groups are attached are the "atomic" sltes and the inter-

vening carbons are the "molecular" sites. Clearly, this



language 1s not particularly appropriate here, and hence we
introduce the more general terms of "event lattice" for
"molecular lattice", and "space-filling lattice" for "atomlc
lattice". The rationale for the use of the term "space-
filling" will become clear when we discuss the theoretical
relationship between the two lattices in Chapter 2.

As mentioned above, we also want to consider cooperative
interactions (i.e., interactions which influence, but do not
prohibit events on neighboring sites). We use a similar
notation to describe such lnteractions. For example, we
might have a lst n.n. blocking potential with 2nd and 3rd
n.n. cooperative interactions. Flgure 1.1 illustrates this
situation. For cooperative interactions, we must also
specify to what extent an event favors or disfavors the
occurrence of a second event at a neilghboring site.

Throughout our discussion we wlll have reason to refer
to distributions on both types of lattices previously
discussed. In general, we will use the generic symbol "f" to
refer to event lattice distributions and "P" to refer to
space-filling lattice distributions. The two types of
distributions are obviously related as is discussed in detail
in Chapter 2. The densities on the lattices (i.e., the sing-
let distribution functions) are given the special symbols '"n"
for the event density and "6" for the space-~filling density.

For the case of monatomic adsorption (i.e., the Langmuir



Figure 1.1. The interaction scheme for an event, X, on site j with a 1st n.n.
blocking potential and 2nd and 3rd n.n. cooperative interactions.
The solid line indicates the range of the blocking potential and
the dashed line indicates the range of the cooperative interactions



case) the event and space-fillling lattices are obviously the
same, and n=0. However, for the dimer problem, n=20 because
each event site has associlated with it two space-~filling
sites. Thus, we see that the relatlonship between n and 6
depends on the particular problem.

Having given a simple example of a kinetlc lattice model
to introduce most of the major concepts of a lattlce process
we can now briefly discuss the general mathematical formalism
through which most lattice processes can be described. We
first consilder a lattice system of arbitrary geometry in
which the varlous lattice sites can exist in one of a number
of different conditions and arbitrary transitions of a site
from one condition to another is allowed. We refer to such
transitlons as events. We assume that the condition of the
sites in the neighborhood of a given site can promote,
inhibit, or prohibit the occurrence of events at that site.

A general description of the time evolution of the
distribution of events over the entire lattice 1s given by

a master equation (6,7) of the form

“““dgé“ = ) {W(B*A)F(B) - W(A*B)F(A)1I. (1.7)
B

Here, A and B are macroscopic (as opposed to quantum) states
of the entire lattice, where the lattice state is designated
by specifying the condition of each of the lattice sites,

F(A) and F(B) are the distribution functions for states A
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and B, and W(A+B) 1s the time independent probability for the
transition from state A to state B. The first term on the
right side of this equatlion describes the increase 1n the
probability F(A) due to the transition of one or more sites
of state B to give rise to state A, summed over all
contributing states B. The second term similarly describes
the loss of F(A) due to site transitions of state A to
another state B. The solution of this equation gives a
complete description of the time evolution of the distri-
butlon function for the general lattice state A. The kinetic
equation for the Langmulir model, Egn. 1.1, 1s an example of
‘a simple master equation.

The solution of the master equation (Eqn. 1.7) generally
provides more informatlon than 1s useful in a partilcular
problem; one is typiqally more interested in the kinetics of
distributions of much smaller configurations of conditions
such as the distributions of condltions for a single site.

We can obtaln the kinetic equations for the distribution of
conditions on a particular set of n siltes, designated by {n},
irrespective of the condition of all other sites of the
lattice, by formally summing Egn. 1.7 over all macroscopilc
states in which the desired conflguration of conditions
appear. The resulting kinetic equation has the general form
ar{h) ()

gt - T - A (B (1.8)
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where ffg;(z) is the n site distribution function for the
configuration of conditions on {n}; x 1s an n-dimensional
vector whose ith component, Xy denotes the condition of the
ith site of {n}; and I'iny(x) and Arn3 (%) are terms that
respectively describe the galn and loss of fgﬂ%(g). Explicilt
forms of thils equation for the kinetics on a linear lattice
will be derived from slightly different considerations in
Chapters 2 and 3.

In most cases Egn. 1.8 does not constitute a mastef
equation because the transitlon probabilities contalned in
the gain and loss terms are conditioned on the local distril-
bution of conditions and couple f%ﬁi(g) wilth distributions
of larger configurations of conditions. The distributions
on the {n} sites therefore generally do not evolve as a
closed set and do not satisfy a master equation. Instead,
Eqn. 1.8 represents an infinite hilerarchy of coupled
differentlial equations that are analogous to the BBGKY
hierarchy of equations that are fundamental to the kinetic
theory of fluids (8). If we consider the particular case
where we have only a single, irreversible event, a lattice
site can be in one of two condltions; an initilal condition
which we shall refer to as a vacancy and denote by 0, and a
final condition brought about by the event which we denote
by 1. If initially all sites are in the séme condition,

then a site being in another condition 1s equivalent to an
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event occurring. Hence we can also meaningfully refer to a
distribution of final conditions as a distribution of events.
In this case, Eqn. 1.8 takes on a simple form in either of
two special cases. When X describes a configuration composed
only of events (l.e., x = 1, where 1 is the occupation vector
with a one in every component) there can be no loss in
f%ﬁi(ﬁ) and only the gain term survives. In the opposite

case where X describes a configuration of vacant sites

(i.e., x = 0) there is no gain in f%ﬁ%(g) and only the loss
term survives. The latter situation is the one we consider
throughout most of this thesis.

The objective of the work presented in this thesis is to
develop and investigate models that describe the cooperative
kinetlc behavior of interacting events on linear lattices
through a kinetic equations approach. We also consider the
applicatlon of these models to specific problems of current
interest as well as the general applicabllity of the models
to a wide range of other lattice problems.

The study begins in Chapter 2 with a review of the
basic model used to describe the kinetics of noninteracting
events on an infinite, semi-infinite, and finlite linear
lattice. The methods of solution of the kinetic equation
for these models is presented in detail. In Chapters 3 and

4, we then extend these models to describe the kinetics of

cooperative events and discuss the general solubility of
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the assoclated kinetic equations in terms of the range of the
cooperative intefaction. In order to test the valldity of
the models, we calculate the sticking coefficient for
monatomic and homonuclear diatomic molecules and compare the
covering fraction and temperature dependence with published
experimental data in Chapter 5. 1In Chapter 6, we present
specific examples of the application of these modeis to other
problems of surface chemistry and catalysis. The generél
applicability of the models to the kinetic description of a
broad range of other lattice based processes is discussed in
detalil., Finally, in Chapter 7, we present a brief descrip-
tion of an attempt to experimentally study the photoinduced
chemisorption of metﬁane onto the hexagonal (110) face of a
tungsten crystal. As opposed to the statistical emphasis of
the major portion of this thesis, thils experimental study is
intended to investigate the mechanistic aspects of the

chemisorption processes.

In the next two sectilons we review a major portion of\
the literature concerning the development of kinetic lattice
models and their application to various problems of physical
interest. We include such an extensive review in this
thesis, first of all, because the body of literature
concerning these kinetic models is not large, but more
importantly, because iattice models have a wide application,

and for this reason, are scattered throughout the literature
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of several scientific disciplines. This disperslon in the
literature has led to the repetitious solution of the same
baslc lattice problem in several different contexts. For
example, the dimer problem has been solved as a polymer
problem, a statistical space-~filling problem, and an
adsorption problem, without 1t being apparent that the
authors are aware of each others work. It is our goal to
revliew the various published articles concerning kinetic
lattice problems and present them in one place for comparlson
and reference purposes. Except for occasional references to
these two sections, the remainder of thls thesis 1s self-
contained and the reader who is not particularly interested

in a literature review can go on to Chapter 2.
Literature Survey - Models

The literature from the years following the 1939 work of
Flory contalns a number of models describing the kinetics of
varlous irreversible lattice processes. Most»of the models
are similar to those discussed in the first section and we
will therefore discuss the results of the various authors in
terms of these models. We primarily limit ourselves to a
discussilion of linear lattices since these are the most widely
used.,

Space-fi1lling problems in which the event exhibits a

lst n.n. blocking potential comprise a large portion of the
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litéréture on kinetic lattice models. McQuistan and Lichtman
(9) have studied the distribution of events wilth a lst n.n.
blocking potential on é linear lattice of N sites. They
derive difference relations, similar to those derived by
Flory, for the quantitiles ngi(o) = ﬁ:%?i‘N_§+2P§n)(g), which
1ls the average distribution of n-fold sequei;is of vacant
lattice sites. Solutions to the recursion relations give
%“)(0) as a complicated double sum., In the limit of an
infinite lattice, all sites become equivalent and the time

dependence of the fraction of single, vacant sites,

E}i(O)[t] is given by

§§%(°)[t] 1 - 8(t) = exp[-2{l-exp(-0t}], (1.9)

where o is the rate of occupation of palrs of vacant sites

on the lattice. In the limit as t-+», this result approaches
%;i(O) = ¢72, which 1s the result cited in the first
section. A somewhat more general treatment of this space-
filling problem was given by Cohen and Reiss (10). The
average kinetic distribution Qf dimers on a linear lattice

of N sites and on rings of N sites were obtalned from kinetic
equations describing the time evolution of P(n)(O)[t]

Solutions on the linear lattice are given by

(n) N<n s | (2e79_p)8
(0)[’0] = [-(n=1)ot] (1 - )
SEPLTAATRIY szo N-n+1 S 1.10)
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On the infinite chain, this equation is written
<n)(0)[t] = exp{-(n-1l)otlexp{-2(l-exp(-ot))}, (1.11)

which reduces to Egqn. 1.9 for n=1l. Equation 1.1l can now be

written in the form

PP @6 = {0 re1a™ e,

where J 1s the leftmost site of {n}, and q(t) = exp(-ot).
This very important result represents an exact truncation of
the hierarchy of kinetic equations and will be discussed at
length in Chapter 2. We shall see then that g(t) can be
interpreted as a conditional probability.

The N-membered ring problem 1s virtually the same as
that for a linear lattice of N-~2 members. This 1s easily
understood since after the occupation of the first palr of
sites on an empty ring of N sltes, the distributions on the
remaining N-2 sites evolve exactly as would the distribution
on a linear array of N-2 sites.

Cohen and Relss also solve the kinetic equations on the
finite lattice by generating function or transform
techniques. For large N, PE}%(O)[t=m] is shown to go as

(l)(O)[ w] % N+2 e_2, and the variance in F%;%(Q) to go as

Pis3
G2 (o) = U(N+2)e . The generating function approach has been
used independently by Page (11) to establish the same

results.
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Vette et al. (12) derive the kinetics of irreversible,
non-cooperative dimer events on a lattice of general
dimensionality from the master equation approach. In
particular, a master equation describing the kinetics of the
vdissociative chemisorption of dimers, including atomic
skating, dimer desorption, and dimer adsorption processes 1s
presented. If it is assumed that the rates of desorption
and skating are negligible as compared to the rate of
adsorption, the master equation reduces to the kinetic
equations describing the dimer space-filling problem. The
hierarchy of equations 1s truncated and exactly solved on

the linear lattice with the results

P{M(0) = (1-0)[1 + % 1n (1-0)777% (1.12)

and 0(t) = 1 - exp{-2(1 - exp(-ot))}, (1.13)

where o is once agalin the rate of adsorption onto empty
sites. The hierarchy of equations cannot be.truncated
exactly for lattices of higher dimension and must therefore
be solved in approximation. To this end, several levels of
approximation are introduced by the authors that serve to
truncate the hierarchy and allow the solution of the
equations. The approximations are based on the number of
lattice sites on which the various probabilities in the
kinetic equations are conditioned and in essence are the non-

equilibrium analogue to the Bethe approximation for a
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lattice gas (13). A first shell approximation, the lowest
level of approximation, 1s made when all conditilonal
probabilities having the same conflguration of events on
sites one lattice vector away from the site of interest are
set equal, regardless of the conditlion of conditioning sites
farther away than one lattice vector. This 1s i1llustrated
in Figure 1.2. In this manner, only probabilities
conditioned on the first shell sites appear in the kilnetic
equations, thefeby truncating the hierarchy and allowing
solutions to be found. The first shell approximation leads
to an exact result for this noncooperative model for the
linear lattice. The next higher level approximation, the
second shell approximation, equates all conditional
probabllities have the same configuration of events on sites
lying within a radius of two lattice vectors from the slte
of Interest. It 1s evident that extending this sequence to
larger shells glves an increasingly higher level of approxi-
mation. Vette et al. report the saturation covering fraction
at several levels of approximation for square, hexagonal, and
‘triangular lattices. It 1s noted that the formalism applies
equally well to irreversible desorption from a completely
‘full lattice. We later use thils fact as a basis for
comparison of adsorption and desorption processes.

A slightly different approach to the space-filling

problems on lattices of general dimensionality was discussed
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SITE OF INTEREST
FIRST SHELL SITE

SECOND SHELL SITE

®
®
®
©)

THIRD SHELL SITE

Figure 1.2. First, second, and third shell sites on a square
and hexagonal lattice.
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by Widom (14)., The model is explicitly developed to describe
the distribution of a hard sphere lattice gas wlth nearest
neighbor exclusion on one and two dimensional lattices. The
event for this model is, of course, the occupation of a
lattice site by a sphere with a spherically symmetric 1lst n.n.
blocking potential. On the linear lattice this model is the
same as the dimer space-filling models. In this one-
dimensional case, the kinetlic equations are solved as density
expansions and compared to expansions of equililibrium distri-
butlons of similar events. The two expansions were found to
differ beginning with the third virial coefficignt. Widom's
results are conslstent with the results of Hoffman, whose
work is examined later in this section. Widom calculated

the saturation covering fraction for the kinetic distri-
butions on a discrete lattice and on a line with the reported

results of 0 = 0.826, and 0.7476, respectively. The

sat
result on the line agrees with that of Rényl (15), and is
correct. Widom later corrected his discrete lattlce wvalue
-2

to the standard result (16), © =1 - e

of © sat

sat
The two dimensional version of Widom's model differs

from the dimer model in that the blocking potential 1s
radially symmetric on the plane. For example, on a hexagonal
lattice the occupation of one slte protects the three nearest
neighbor sites from occgpation. As with the dimer model in

two dimensions, the kinetic equations for this model are not
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exactly soluble. Widom therefore calculates the saturation
density on a hexagonal lattice to be 0.76%0.02 by Monte Carlo
techniques.

Several models have been developed to examine the effect
of longer range blocking potentilals on the kinetic distri-
butions of the space-filling problems. Boucher (17), for
example, models the kinetics of an event with a 2nd n.n.
blocking potential within the framework of side group
reactions on a polymer chain (simllar to the Flory model).

He derives the kinetlic equations for the reactlon of three
adjacent pendant groups on a polymer chain of length N and
solves the equations using a combilnation of recursion
relations and generating function techniques for Nﬁg;%(g)[t]
and (N—l)?§§zj+l}(g)[t], the average number of single and
double isolated vacancies at time t. In the limit as N, t-w,
a total fraction of sites equal to e—2 remain unreacted in
singlets or palrs. Of this amount, the fraction of pailrs of
unreacted sites is 2e”3 = 0.0996. Mackenzie (18) describes
a further extension of the model on a lattice of length N

to which events with a general rth n.n. blocking potential
and also utilizes generating functlon or transform techniques
in its solution. His results show that in the limit as t-ew,

for large N, the average distribution of isolated vacanciles

is given by

F%i(g) Vv (N+r+l) Al(r+1) (1.14)
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and the dispersion of this quantity 1s given by
02 v (r+1) (N+r+L) A, (r+1) (1.15)

where Al(r) and Ae(r) are quadratures that are parametrized
on r, the range of the blockling potentlal. For the case
where r=1, the integrals can be evaluated explicitly in

=2 -4

and A2(2) = 2e ', and

closed form to give A1(2) = e
Egqns. 1.14 and 1.15 reduce to the results cited previously
for the work of Cohen and Relss, and Pége.

If, in the above model, the limit as N-+» 1ls taken such
that the ratio N/r 1s held constant, we obtain a description
of the distribution of unit intervals on the infinite line.
In this limiting case, Mackenzle finds that the distribution

of vacant intervals of length x at lattice saturation is

given by
&) v
1-e"b

Po(x) = §6%67 dve™ V¥ exp{-2|dt( = )}, (1.16)

0 0

where x lies in the range 0<x<l. Thils space-filling problem
on the infinite line was first treated by a direct analysis
of the distributions on the 1line by Rényi, and has come to
be known as the parking problem. Analyses and generaliza-~
tions of this problem are given by Domb (19) and Ney (20).
Kinetic models describing the distribution of
coopgrative, irreversible events can generally be considered

as direct extensions of the space-fllling models where the
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transition probabilities are now dependent on the cooperative
interactlions of the local distribution of events on the silte
with the site of interest. The kinetic equations for these
models are similar to those of the space-~fllling models;
however, 1n general they are more difficult to solve because
of the increased coupling between distributions. In many
cases 1t is still possible to truncate and solve the
hierarchy exactly on the linear lattice. This i1s 1in contrast
with the kinetlc equations for reversible events that can be
solved exactly in only a very few cases (cf. Langmuir model).
We can begin our review of the comparatively few
cooperative, irreversible models presented to date by con-
sidering the work of Schwarz (21) who describes the kinetics
of an event with a 0Oth n.n. blocking potential with 1lst n.n.
cooperative interactions on a lilnear lattice of length N.
As 1s the case for all problems on the finite or semi-
infinilte lattice, the kinetic equations derived by Schwarz
are dependent on the position of the configuration of events
on the lattice and the distributions are therefore character-
ized by the additional parameter "i" that locates the site on
which the leftmost member of the configuration of events
occurs. To truncate this slte dependent hlerarchy of
equations, a relation referred to as the triplet closure
rule 1s presented that allows the distribution of any

configuration of events to be written entirely in terms of
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triplets and pairs of events. This rule can be written 1n

the form

(3)
P(?;) = Py (xy 5%y 95Xy 30) P09 (Xg 495X 405%,3)
1 * %) (2)

Por1(Xaa1o%142)Prao(X5400%443) (1.17)

(3) (3)

P1+2(x1+2’?1;3’X1+4)P1+3(xi+3’xi+u’X1+5>
5 cees

Pya3(Xq430%54)

X

(k)
where P (Xi’xi+1""’xi+k—1) is the distribution of events on

sites iTi+1,...,i+k—l. It 1s shown in Chapter 3 that the
triplet closure rule is exact in only one case, but provides
a convenient approximation with which to truncate a kinetic
hierarchy, especially in the limit of low event density or
small cooperative Interaction. Usilng the triplet closure
rule, Schwarz truncates the kinetic hierarchy and obtains
four coupled differential equations that are still
parameterized on 1. He also presents the equations for the
problem on the infinite linear lattice. None of the
equations are solved in hils paper.

E. A. Boucher (22,23) extends the cooperative model to
describe events with a general rth n.n. blocking potential
and r+lst n.n. cooperative 1interaction on the finite lattice
of length N. Generating function techniques are used to
solve the site dependent kinetic equations for Pin)(Q), 8,

and é, where & 1s the rate of occupation of a site. His
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results are presented as complicated quadratures. Numerical
values of the saturation values of P(n)(O) are tabulated as
‘a function of r. Gonzalez et al. (24) attack a similar
problem on the infinite linear lattilice by assuming that the

solutions to the kinetic equations have the form
P{1)(0) [£] = F(t) exp{-2t(n-2r+k)}

where F(t) is an unknown function of t, and k is that portion
of the rate constant reflecting the r+lst n.n. cooperative
interactions. The equations are then solved for F(t) in
terms of a quadrature. In the case where r=0, results found
for the limit where N-»» agree with those of Boucher. The
continuous limit for noninteracting events 1s shown to agree
with the results of Rényi.

An approach based on the grand ensemble formalism is
used by Hoffman (25) to formulate a cooperative irreversible
kinetic model of general application. As presented, the
events of thls model have lst n.n. blocking potentials and
mth n.n. cooperative interactions. The f(n)(x), the distri-
bution of events on a specified set of {n} sites without
regard to the condition of the rest of the lattice, are
expanded in a series of the form

(n)
{n}

(n+m), n+m
> (1.18)

Xx) = ¢ s
m*O m! < {n+m}’ n+1
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(n+m) ,
where ¢ is the probability that only the set {n}VU{m}
{n+m}
sites are occupled, the set {m} are sites on the lattice
other than {n}, and <;>n+m indicates an average over all
n+l
possible positions of the set {m}. The kinetic equations
_governing the ¢§g% are basically master equations (cf. the
discussion followlng Egn. 1.7) since ¢§§% is a distribution

function for the whole lattice, and are given in the form

(n)
d(p (n_l) (n)
{n}
) o ® -(o ® , (1.19)
v Js%n} J,ink-J {n}-J <'n+l,{n}>n+l {n}

n
n

where ok,{n} 1s the rate at which event k occurs on a lattice
occupied by the set of {n} events. The kinetic equations for
the model are obtalined from the time derivative of equation
1.18 and the appropriate substitution equation 1.19. After
extensive manipulation, these equations are expressed as
expansions in n-1,%2 a generalized Ursell function (8).

These equations are then solved as expansions in n, the time
dependent event density. The coefficients of these
expansions are wriltten as sums of cluster diagrams
representing the interaction of events on a lattice of
general dimensionality. It 1s the cluster dlagrams that
contain all of the information relatlng to geometries and
cooperative effects 1n various systems. A general procedure

for the generation of contributing cluster diagrams in the
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coefficient of the Jth power of n 1s presented, where for
practical reasons J = 1,2,3,4. The model has great
versatllity as presented. It is also easily extended to
include a general rth n.n. blocking potential by including
constraints on the evaluation of the cluster diagrams.
There are, however, drawbacks to thils model. Even though
the density expansions are exact solutions of the kinetic
equations, the evaluation of cluster diagrams for higher
terms often becomes impractical, limiting the expansions to
as little as three or four terms. This, of course, limits
the accuracy, especlally at high event densities. Numerical
results are presented that compare the four term density
expansion for the pailr distribution (f§§23+1}(§)) of random
events on the linear lattlce to exact solution obtailned
previously (17) and to four term density expansions of
equllibrium pair distributions.

Yet another approach is used by Go (26) to describe the
irreversible cooperative kinetics of a general chemical
system. Based on the path-integral model of Kikuchi (27),
this model describes the time evolution of an ensemble of
lchemical systems 1n terms of the most probable path taken
by a system. A path 1s the sequence of possible transitions
from one state of the system to another. The most probable
path is the one most 1likely to be taken by an ensemble

member as it evolves in time. In the case of a lattice
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system, the most probable path will describe the evolution
in time of the irreversible diétribution of events over the
entire lattice. A brief description of the Go model is as
follows: 1t 1s assumed that an ensemble of systems is in
contact with a heat reservoilr that induces transitions
between states of the system." The time evolution, or path,
of a system 1s specified by fhe transitlion probability
between two states, eiJ, a set of state parameters, {pi(t)},
which describe the probability that the system is in state 1
at time t, and a set of path parameters, {Pij(t,t+At)}, which
reflect the conditional probability that a system that is 1n
state 1 at time t wlll be in state J at time t+At. The
logarithm of the expression describing a path probabllity is
maximized with respect to the path parameters, subjJect to
the constralnts of the conservation of probability. The
resulting equations give the most probable path in terms of
‘the path and state parameters, translitlion probabillities, and
Boltzmann-like welght factors written in terms of the free
energy of the state. The klnetic equations for the
irreversible chemical changes of state are obtained from the

time derivative of these equatlions and have the form

dp '
—L = ) 61J{pJ exp[-B(fi-fJ)/ﬂ - Py eXp[—B(fJ-fi)/2)},

3
1 (1.20)

where fi 1s the free energy of state 1, and 8 1s the

statistlcal temperature. Equation 1.20 represents the
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hierarchy of equations that must be truncated and solved
according to the conditions of thé sltuation under
consideration.

The criterion of reversibillity of events in a kinetic
lattice model is necessary to examine the relaxation of a
distribution of conditions to an equilibrium configuration.
Howéver, as we noted earlier, the kinetic equations that
describe the evolution of these distributions are more
difficult to solve than those for a single, irreversible
event, and have beenvexactly solved in only a very small
number of instances. One important example of a cooperative,
reversible model that has been solved exactly was presented
in 1967 by R. J. Glauber (2). The system he considered was
a linear lattice of N atoms, for which each atom had a

magnetic spin of o = £ 1/2. The master equation for this

system is

- L wy(oy]a)P(g,t) (1.21)
J

where Gj is the spin of the jth site, wj(leg) 1s the
transition probabiliﬁy from spin x of site J as a function
of the particular lattice state g. Here o 1s the spin
occupation vector for the entire lattice, and Q<J) differs
from ¢ in that the spin of site J 1s reversed. Equation

1.21 was used by Glauber to derive the following kinetic
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equations for the average spin on site j, <0J(t)>, and the

two spin correlation function, <oj(t)ok(t)>, for sites J

and k:

(oj(t)> = -2(oj(t)wj[oj(t)]> (1.22)

op

and

(o4(8)0y (£)) = =2(o, ()0 (£){w;Lo,(%)]

QIQ
ot

(1.23)
+ o, [0, ()1

The particular form chosen to represent the nearest nelghbor
cooperative interactions in the transition probabllities
allow these two equations to be solved exactly and
independently using generating function or transform
techniques. Other forms for this interaction leave the
equation coupled.

Glauber utilizes his kinetic model to describe the
dynamics of lattice spin waves, investigate the influence
of a time dependent magnetic fileld on the distributions of
spins, and to find the frequency-dependent magnetic
susceptibility of the lattice in a weak fleld limit. He
also derives the fluctuation-dilissipation theorem relating
the magnetic susceptibility to the Fourier transform of
the time dependent spin-spin correlation function at
equilibrium,

Much of the other work concerning reversible events

has come in the connection with the study of magnetic spln
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systems. A detailed review of this topic 1s somewhat beyond
the range of this thesils, however, 1t can be mentioned that
higher dimensional analogues of the Glauber model and
problems involving magnetic spin lattices 1n an external
field have been considered but have not been solved

exactly. Huang (28) presents a brief overview of these
problems and the various approximation techniques used in

thelr solution.
Literature Survey - Applications

We now examine some applications of the models dis-
cussed 1in previous sectlons to problems of chemical and
physical interest.

Historically, much of the development of one-
dimenslonal kinetlc models has come in connection with
polymer chemistry. As we have seen, one form of the dimer
space-fllling model was presented in 1939 by Flory to
study the condensation reaction of neighboring ketone
groups of poly(methyl-vinyl) ketone. Barron and Boucher
(29) have proposed the use of dimer space-filling models
to determline whether the reaction mechanisms of the
dechlorination of polyvinyl chloride, 1llustrated in Egn.
1.24, and the dehydrochlorination of polyvinylidene

chloride, illustrated in Egn. 1.25, are random or self-

propagating.
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"If the model distributions match the experimental results at

lattice saturation, then 1t i1s assumed that the reaction of

i
__?_ ——> [=CH=CCl-| + HC1 (1.25)
C

a particular polymer unit is governed by random selection.
If a substantially larger fraction of monomer units have
reacted than the 13.5% predicted by the space-filling models,
then 1t 1s assumed that the reaction proceeds along the
chain in a highly cooperative, sequential manner. Experi-
mental results are presented by the authors to support the
random reaction mechanism for Egqn. 1.24 and the sequential
mechanism for Eqn. 1.25.

Cooperative, irreversible models on the linear lattice
‘have been useful in the description of the cooperative
reaction of polymer functional groups. Alfrey and Lloyd
(30), Arends (31), and Keller (32) present similar models
for the kinetics of events wilith a 0th n.n. blocking
potential and 1lst n.n. cooperative interactions to describe

the kinetic distribution of sequences of n unreacted
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functional groups. Alfrey and Lloyd suggest the application
of the models to lnvestigate the cooperative nature of such
reactions as the dehydrochlorination of polyvinyl chlorlde,
as seen in Eqn. 1.26, or the quaternization of poly(4-vinyl

pyridine), illustrated in Egn. 1.27. For example, in Eqgn.

.
—?——?— > ~CH=CH—- + HC1 (1.26)
H H
] Lo
—?———C—— + CH3I > —?———C— (1.27)
H |~t H | N1
N N
|
CH3

1.26 the loss of HCL from a monomer unit converts the
adjacent units to allylic structures, which tends to promote
the dehydrochlorination reactlon. On the other hand, the
charged amine group of Egn. 1.27 1s thought to inhibit the
quaternization of adjacent units, especilally during the
latter stages of the reaction. A comparison of the model
and experimental distributions would help clarify the nature
and extent of the cooperative behavior. The results of
Barron and Boucher, from the application of the space-
f11ling models to the dehydrochlorination of poly-
vinyllidene chloride, supports the cooperative nature of the

similar reactlon of polyvinyl chloride.
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A variation on the cooperative models we have seen thus
far 1s used by McQuarrie et al. (33) to describe a kinetlc
version of the equilibrium Zimm-Bragg (34) model that
describes the denaturation of a polypeptide. McQuarrie
defines the event to be the breakage of a peptlide bond and
the subsequent loss of helical structure of the polymer
unit, where the breaking rate of the peptide bond depends
on the average cooperative effect of the condiltlion of a
cluster of neighboring segments instead of accounting for
the effect of each nelghboring segment individually.
Distributions of sequences of unbonded segments are calculated
from a hierarchy of kinetic equations in the standard manner.
No experimental results are presented for comparison. The
same problem of polypeptide denaturation is also treated by
Go (35) who uses the path integral formalism which he
developed to describe chemical kinetics. The basic model
was described in the previous section. We remember that
his kinetic equations are derived to describe an arbilitrary
chemical process in terms of state parameters and path
"parameters that are analogous to the event distributions and
transition probabillities of the lattice models. To model
the polypeptide denaturation Go defines the state parameters
as the distribution of conflgurations of bonded and unbonded
segments, but restricts the description to distributions of

configurations of three segments or less. (This is
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reminescent of the triplet closure approximation invoked by
Schwarz which was previously discussed.) The path parameters
are specified as the transition probabllity for an event with
lst n.n. cooperative interactions. The resulting kinetic
equations are solved in the linear or near equilibrium
approximation. Once again, no experimental results are
presented.

Isbister and McQuarrie (3) adopt Glauber's reversible
cooperative model to describe the rotational motion of a
polymer pendant group about the axls of the monomer segment
to which 1t 1s attached. It 1s assumed that the pendant
group can take on one of two possible orlentations with
respect to the axis of the segment and that the dipole
moment of the polymer segment will depend on the pendant
groups orientation. Thus, the theory can be experimentally
tested. The average dipole moment and the dipole-dipole
correlation function are obtalined directly from the Glauber
kinetic equations. The dielectric susceptibllity of the
polymer chain is then calculated as the Laplace transform
of the dipole autocorrelation function, <om(0)cm(t)>, and
plotted versus electric field frequency for various polymer
chain lengths to examlne the chain length dependence of the
rotameric motions.

In other areas of application, kilnetic lattice models

have been utilized in the study of processes that occur on
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the surface or in the bulk of a crystalline solid. We have
already seen the application of two-dimensional space-~fllling
and cooperative models in the description of irreversible

. adsorption processes in the work of Vette, and of Hoffman.
However, also of interest are problems involving the reaction
of chemical specles that occupy neilghboring sites on a two-
(or three) dimensional lattice. For example, under normal
laboratory conditions the surfaces of several metals or

metal oxldes are strongly hydrated and are essentlally
lattices with hydroxyl groups attached to each site. On
heating these surfaces it is possible for neighboring
hydroxyl groups to react with the elimination of water, and
to leave elther one vacant lattice site or an oxygen atom
bridging two adjacent sites. The analogy to the Flory model
is obvious. The distribution of reacted sites or unreacted
hydroxyl groups can be used to predict various physical
properties of the surface such as its catalytic activity.

The dependence of the catalytic activity of a surface on

the distribution of chemlcal species on its surface is
further discussed in Chapter 6.

A study of the dehydration of metallilc surfaces was
reported by Fuller et al. (1) who model the noncooperative
combination and elimination of neighboring hydroxyl groups
on a general NxN square lattice. The reaction of neighboring

hydroxyl groups proceeds according to Eqn. 1.28. Instead of
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utilizing a two dimensional space-filling model, they

OH OH 0
ol . /N
~Mm———M— _—> M- + H2O (1.28)

represent the square surface as a composite of finite, one-
dimensional lattices that are assembled to comprise the
NE-SW diagonals of the lattice. It 1s then assumed that the
elimination reaction occurs only between hydroxyls that lie
on one of the diagonal lattices. Each diagonal can then be
considered as an independent, finite lattice for which the
distribution of events 1s readily attainable by methods
previously discussed. The distribution of events of the
square lattice is then obtalned as an average of the distri-
butions on the linear lattices. In this manner Fuller
obtains the result that at saturation esat = 0.921, or
approximately 7.9% of the hydroxyl groups remain vacant and
lsolated. As a comparison he also calculates the saturation
distribution by Monte Carlo techniques with the results that

0 = 0.925, or 7.5% of the hydroxyl groups remalin isolated.

sat
Monte Carlo simulation of the noncooperative dehydration of
a surface was also reported for the surface of silica gel by
Peri and Hensley (36), and for the surface of y-alumina by
Peri (37). The fully hydrated surface of silica gel
described by Peri and Hensley 1s composed of sllicon atoms,

each occupied by a pair of geminal hydroxyl groups. In the

dehydration reaction 1t 1s thought that one of the two
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hydroxyl groups on a silicon atom reacts with one of the
geminal pair on an adjacent sillicon atom in the same lattice
row to form a siloxane link and a viclnal pair of hydroxyl
groups. A vicinal and geminal hydroxyl group or two vicinal
hydroxyl groups are not allowed to react. The results of
this calculation show that at saturation, 15.4% of the
hydroxyl groups were left lsolated and unreacted. The
difference In these results with those obtained by Fuller
arise from the difference in reaction geometry of the two
problems. Whereas the dehydration of the silica gel occurs
along the parallel edges of a unit cell, the dehydration
model proposed by Fuller is characterized by the reaction of
hydroxyls across the dlagonal of the square unit cell.

The model of the dehydration of y-alumina, described
by Peri, has one hydroxyl grohp per surface site and allows
the reaction of a hydroxyl group to occur with either
horizontal or vertical nearest neilghbor groups. At
saturation approximately 9.6% of the groups remain isoclated.

Three-dimensional appllications of kinetic lattice
models are rare, however Jackson and Montroll (38) utilize
basic combilnatorial techniques to describe the statistics of
the recombination of nearest neighbor nitrogen radicals that
have been condensed in a solid nitrogen matrix. It 1s
assumed that a radical reacts with a single nearest neighbor

radical to form a nitrogen molecule. The average saturation
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distribution of free radicals is then calculated for lattices
of cublc symmetry from the number of ways the nearest
nelghbor sites can react without reacting with the site of
interest. Since this model describes the distribution of
events as an average over all configurations of neilghboring
sites, 1t clearly ilgnores the kinetic, space-filling aspects
of the problem and the results must be consldered as an
upper limit for the possible kinetic distributions. For
example, the solution of the model on the linear lattice
gives a saturation density of unreacted radicals of 17.7%

as compared to 13.5% for the space-filling models. The
three dimensional results for the fraction of radicals for
simple, face centered, and body centered cublc lattices are
reported to be 0.138, 0.122 and 0.102, respectively. A more
detailed discussion of this approach to the calculation of
lattice distributions can be found in papers by Roberts and

Miller (39), and Lichtman and McQuistan (40).
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CHAPTER 2. NON-COOPERATIVE, IRREVERSIBLE MODELS

In Chapter 1 we presented a very general overview of
kinetic lattice models and their applications. It is the
purpose of this chapter to review the development of the non-
cooperative models by examining the derivation and solutlon
of the kinetic equations for the infinite, semi-infinite, and
finite linear lattices. Many of the ideas and techniques
utilized in this chapter are fundamental to the development
and discussion of the models with cooperative events

presented in Chapter 3.
The Infinite Lattlce of Equivalent Sites

As in the previous chapter, we conslder an ensemble of
linear lattices in which each lattice 1s composed of an
infinite number of equilvalent, regularly spaced lattice
sites. FEach site on a given lattice can be in one of two
conditions, 0 or 1, which represent two distinct chemical or
physical states of the site. An event 1s now defined as the
fransition of a site from condition 0 to conditlion 1. For
allowed transitions, the transition probability for an
event is denoted by o. All sites are initially assumed to
be in condition 0. An event with an rth n.n. blocking
potential which has occurred on site J prevents transitions
from occurring on sites j-r through j+r. As in Chapter 1,

we define ffg%(l) and fggi(g) to be the respective
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probabilities that a particular set of n sites, which we
denote by {n}, have or have not undergone transition at time
t. We can relate these two types of distributions through
the followlng operator formalism. Let %k(l) be defined as
an operator that acts on individual ensemble members and
takes on a value of 1 1f site k on the particular lattice
has undergone transition, and takes on the value of 0 1f
site k 1s vacant. The operator fk(l) is evidently a
projection operator that projects from the ensemble that
subset of lattices on which silte k has undergone transition.
Also, let %k(o) be defined as a similar operator that
projects the subset of lattices with a vacancy at site k

from the ensemble. We note that these operators satisfy the

following relation:

fk(l) + fk(O) =1 (2.1)

The event distribution on {n} can then be expressed in terms
of these operators as -

(n) = 1 r,
f{n}(l) - M" kE]{}In} fk(l) (Ensemble) (2-2)

where (Ensemble) represents all of the members of the
ensemble, and M 1s the number of lattices in the ensemble.
The distribution of vacancies on the {n} sites is similarly

written as

i %k(o) (Ensemble). (2.3)
ke{n}

==

(n) () -
Tiny () =
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We can now obtaln the formal relation between the two types
of distributions by substituting Eqn. 2.1 into Eqn. 2.3 with

the result

i (1 - %k(l)) (Ensemble). (2.4)
ke{n}

=i

(n) oy -
Tin)(Q) =

By expanding the product we have that

(n) r A
f (0) = (=1) I f.(1) (E ble)
{n}*= {r}Z{n} ke{r} X neemb e

= 117 e{Bw, (2.5)
{r}e{n}
where {r} represents a possible subset of {n} (including the
nullset), and r is the number of elements of {r}. To
11lustrate this result, let us explicitly find the distri-
bution of vacancles on three adjacent sites (say sites J,
j+1, and J+2) in terms of the distribution of events. For

‘this case we find that Egn. 2.5 can be written

(3) _ (1) (1)
F13oge1,5+23 (2 = 1 = g (1) = Ty (1)
(1) (2) (2)
- figiay (D) Ty ey (D) ¥+ Ty g0y (D
(2) (3)
¥ f{J+l,J+2}<-l-) B f{j,,j+l,j+2}(l)’

where the doublet and triplet distributilons can each be
equal to zero depending on the range of the blocking
potential exhibited by the event. From this discussion,

it should be noted that the set of all distributions of
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configurations of events (or by Egqn. 2.5, the set of all
distributions of configurations of vacancies) 1s complete;
that 1is, by the conservation of probabillity, the distribution
of ény configuration of events and vacancies can be written
entirely in terms of distributions of events (or vacancies).

We begin our derivation of the hierarchy of kinetic
equations for this model by considering the manner in which
the distribution fggi(l) changes in time. Because we are
modellng an irreversible process, the time rate of change of
f%ﬁi(l) 1s solely determined by the ensemble average of the
rate of transition of sites in {n} that give rise to the
configuration denoted by (1), i.e., the gain term of Egn.
1.8. Since we now consider only blocking potentials, this
rate at a glven slte on a particular lattice 1s gzero or o,
depending on the local distribution of events and vacancies.
Consider, for example, an ensemble member which, at some
time t, has site j vacant. An event can occur at that site
thereby changing the ensemble density of events fgig, only
if site j is not blocked from transition by an event on a

nelghboring site which 1s r or less sites away. The time

rate of change of f%}%(l) is therefore

(1)
df{g}(l) - o pl2r+l)

dt £-r, ..., g+ry Q)+ (2.6)
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The kinetic equations governing the distribution of
larger configurations of events depend in a very complicated
manner on the set {n}, and r, the range of the blocking
potential. We can, however, utlilize the operator formalism
which we previously introduced to write the general kinetilc
equation governing the time evolution of an arbitrary

configuration of events in the following manner:

(n)(l> R
——i%%——— = % ) [ n (1 - fk,(l)) it %k(l)} (Ensemble)
Jeintilk'el{j~-r,...,j+r} ke{n-j}
_ ‘ k (p) '
=o 1 { I (-1) f{k}u{n-J}@)}’ (2.7)
Jein}\ {kle{j-r,...,J+r}

where U 1s the standard notation for the union of two sets,
and p 1s the number of elements in the set resulting from
the union. Equations 2.6 and 2.7 form the infinite
hierarchy of differential equations describing the evolution
of distributions of irreversible events on the infinite
linear lattice.

In a similar manner we can write equations for the

distribution of vacancies as follows:

(n)(o)
__é%l___ %% Z { 1 %k(o)' } (Ensemble),
jein}t ke{nlu{j-r,...,j+r}

g % f(n+2r)(o) , (2.8)
Je{n} {n}lu{j-r,...,Jj+r}
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The latter set of equations, in general, involve fewer terms
and is therefore less complicated. However, as previously
mentlioned, the complete setwof equations for vacancy distri-
butions 1s equivalent to the complete set of equations for
event distributions. This can be explicitly seen by
differentiating Eqn. 2.4 with respect to time and substi-
tuting Eqn. 2.7 into the result to obtain Egn. 2.8. In the
case where the distributions describe configurations of

consecutive vacant sites, Eqn. 2.8 reduces to the following

cloged set of kinetilc equations:

(n)
(2r+1)
dgéo,) = - Nno f((_)';n R n<r+l (2.9)
(n)
(2r+l) n-r-1 (2r+l+%)
dgéol = - o(2r-n)f(0) =~ 20 ) £(0) , r+l<n<2r
2=0 (2.10)
and
(n)
(n) r (n+f)
dgéo")' = - 0<n“2f’)f(9ri) - 20 ) £(0) , n>2r (2.11)
2=1

Here all the distribution functions refer to consecutive
vacant sites, hence the subscript designating the set of
lattice sites 1s superfluous and has been deleted to be
consistent with the notation of Chapter 1. Equations 2.9,
2.10, and 2.11 form an infinite hierarchy of equations that
can be exactly solved for the distributions of adjacent

vacancies.
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The distributions of events, or equally well, the
assocliated distributions of vacancles, provide a complete
description of lattice processes for the case that an event
1s represented by the transition at a single site. However,
as we noted in Chapter 1, it can also be of interest to
study the space-fllling characteristics of a distribution of
events. In other words, instead of representing an event as
a point transition with an associated blocking potential,
we wish to conslder an event as an entity of finlte spatial
proportlons that occuples a segment of definite length on the
lattice. Thus, we consider two different but related
lattices; the first belng the event lattice we have
previously introduced, and the second being a lattice on
which an event with an rth n.n. blocking potential occupies
a lattice segment which is r+l event lattice spacings in
length. We refer to this second lattice as a space-filling
lattice. The space-filling lattice sites are defined to be
the centers of the r+l units into which the occupied length
can be divided. The spacing of sites of the space-filling
lattice 1s clearly the same as for the event lattice. (This,
however, 1s only true for a one-dimensional lattice.) By
definition, each event occuples r+l space-filling lattice
sltes. This situation 1s illustrated in Fig. 2.1 for the
case where r=3, In the dimer adsorption example cited in

Chapter 1, the atomlic lattice 1s the space-filling lattice
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and the molecular lattice 1s, of course, the event lattice.
Note that in thils case the two lattices are not colncident,
but are offset from each other by half a unit spacing. Some
thought will show that this 1s the situation when r is odd.
When r 1s even, the two lattlces are colncildent. In certain
cases (e.g., the dimer adsorption problem) it is more
convenient to know the distribution on the space-~filling
sites than on the event sites. We denote these distribution
functions by P%ﬁ;(l) where y is the occupation vector for
the set of sites {m} on the space-filling lattice.

It is important to note that the kinetic descriptions of
a process on the event and space-filling lattices of a
particular model are in general not equivalent if we consilder
only a portion of the lattice. The configurations on the
event lattice always uniquely determine a cbrresponding
configuration on the space-~filling lattice. However, a
particular space-filling configuration on a lattice segment,
in general, can result from one of several event configura-
tions. A simple example is given in Fig. 2.2. The space-
filling distribution functions for a lattice segment can,
therefore, be written as a sum of the event distributions
that give rise to the space-filling configuration. However,
there is no correspohding converse relationship. Because
the space-filling distributlions, 1in general, correspond to

a sum of several event distributions, they contain less
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rise to the occupation of slite J on the space-
filling lattice
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information and provide a less complete description of the
kinetic process than do the distributions on the event
lattice.

Evén though distributions on the space-filling lattice
do not contain the information of the corresponding distri-
butions on the event or molecular lattice, the space-filling
distributions often are related to properties of physical
interest. In the Flory model discussed earlier, the event
is the reaction of a palr of neighboring pendant groups on
the polymer chain. The quantity of interest to Flory was
not, however, the number of pairs of reacted groups (i.e.,
events), but rather the number of unreacted pendant groups,
i.e., the space-filling vacancies.

The kinetic equations for the distribution of n
consecutive space-filling vacancies, P(n)(g), are easily
derived from Eqns. 2.9, 2.10 and 2.11. (Here, as before,
we omit a subscript on the distributlon functions for
consecutive vacancies.) An examination of the event and
space-filling lattices for general r shows that P(l)(O),
the density of space-filling vacancies, is related to the

density of event vacancies by

P(L) o) = (re1) £(1(0). (2.12)

In addition, we see that

p(M (o) = ¢(P+T) (o), (2.13)
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Differentilating Eqn. 2.12 with respect to time and substi-
tuting this result, along with Eqn. 2.13, into Egqn. 2.9 for

n=1l, we obtain the result

(1)
QE_EELEl = _(r+1)gP(r+1)(9>. (2.14)

The remaining kinetilc equations 1n the hlerarchy are obtailned
by making the same substitutions into Egqns. 2.10 and 2.11.

These equations are listed below:

(n)
(r+1) n-1 (p+1+4)
dgéo) = _(r—n+2)oP(£) - 20 ) P (0), 1<n<r (2.15)
2=1
and
(n)
(n) (n+2)
dgt(:O) = ’<n‘r)°P<8_) - 20 f P (D), n>r (2.16)
2=1

These equations can also be derived without explicitly
considering the event lattice by directly examining the time
rate of change of ngg.

Equations 2.14, 2.15 and 2.16 form an infinite set of
coupled differential equations describing the kinetics of
the distribution of vacancles on the space-filling lattilce.
We now truncate the hierarchy in an exact manner. To this
end we define a new variable q'j which 1s the conditional

probabillity that a glven site 1s vacant glven that the

preceding J consecutlve sites are vacant. That 1s

(J+1) (3)
P(0) = P(0) ay . (2.17)
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Differentiation of Egn. 2.17 with respect to time gives

(J+1) ()
ar) dP(O) + P(J)

—at 9 dt (2.18)

Equation 2.16 can be substituted into Eqn. 2.18 and the

result rearranged to give

dq rol (J+e) (3)
= - -0qy - 20 ] [P(g) /P(g)] {qjm—qj] > J2r,  (2.19)
=1

which 1s" the general equation governing the time evolution

of all qj, j>r, and 1s completely equilvalent to the hierarchy
defined by Eqn. 2.10. The boundary condition for the
problems we consider is qj=1, at t=0, for all j. It is

evident that

qy = 9 (2.20)

is a solution of Egn. 2.19 satisfying the boundary condition.

Substituting this result back into Eqn. 2.19 yields

dqr
5 = - 0 4 (2.21)

which has as its solution

q, = e™F. (2.22)

Using these results we can write Egqn. 2.17 in the form

37T g (2.23)
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Equation 2.23 is the exact solution of the infinite hilerarchy
for all Pgég, where J>r. Physically, the truncation equation
(Eqn. 2.20) says that the sites on which a particular site is
conditioned that lle beyond r successive space-filling
vacancles do not affect the conditional probability. That
1s, the r vacancles separating the site of interest from the
other sites on the lattice block the influence that the
conditlion of these sites might have on the rate of addiltion
to the site of interest. This truncation procedure reduces
the determination of any distribution which can be written
in terms of consecutive vacancles to the solution of a
finlite set of differential equations, namely Eqns. 2.14 and
2.15. In Chapter 3 we will see that distributions involving
nonconsecutive vacancies can be obtained in a similar

manner.

Equation 2.20 can now be used to solve Egns. 2.14 and
2.15. These equations form an autonomous system of differ-
entlal equations, that is, time does not appear explicitly
on the right side of the equations. Hence, the time can
be completely eliminated by dividing all of the equatilons
by Egn. 2.21. Thus, Egn. 2,14 assumes the form

(1)

dP(0)

)
dq )

(r
= (r+1)P(0 (2.24)

>
r

where qp, is now the independent variable, and similarly,

Eqn. 2.15 has the form
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(
dP(
dq

r

In particular, for J=r, Eqn. 2.25 can be written

da 2 ngg e 2
n -
dqr 2 Zzo(qr) 2 (2

which has as the particular solution obeying the boundary

conditions

(r) i
P(0) = exp{2 I 3 (qr2-14 : (2.

=1
This result, when substituted into Egns. 2.24 and 2.25,

ylelds the results q

r r
(1) 1,8
P(0) = 1+ (r+1) | dx exp{2 } ¢ (x"=1)p, (2.
1 =1
and
a
(n) r n-1 .
P(O) = 1 + | dx|(r-n+2) + 2 ] x
1 =1

r
X exp{2 ) % (xz—l)} » l<n<r. (2.

=1

Equations 2.23, 2.28 and 2.29 are the consecutive vacancy

03 ol _(r)
L= {(r+2-n) + 2 ] (q,)71P(0), 1<n<r (2.

25)

.26)

27)

28)

29)

distributilons on the infinite discrete space~filling lattice

for events with an rth n.n. blocking potential. In the

present form they are functlons of the independent variable
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Qe Thelr time dependence can be established using Egn.
2.22.

It can be seen 1n the case where r=1 that these results
reduce exactly to those obtained by Cohen and Reiss for
dumbbells on the infinite lattice, given in Egn. 1.11. The
saturation limit for the fraction of vacant sites in this
model 1s obtained from Egn. 2.28 by taking the limit as

qf+0. We find that

1 r
(1)
Psat(O) = 1 - (r+l) j dx exp {2 | % (x“—l)},(2.3o)
0 =1

which 1is Péi%(o) = e_2 for r=1, in agreement with previous

results.

We will also find it useful for our later discussion of
the semi-infinite and finite lattice distributions to solve
this model for the distributions of two nonconsecutive
vacancies on the space-filling lattice, P§§3J+2}(Q), in the
case where r=1. The kinetic equations for these distri-
butions can be derived from Egqn. 2.8 or can be derived by
directly consldering the time rate of change of the
appropriate distribution. TheSe kinetic equations are
given below.

(1)
dp (0)
- a0 22, (2.31)
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(2)
ap L (0)

{Jsj+l - (2)
T = 0 Py 4e1)(Q)

(3)
- 20 P{J’J+1,J+2}(Q)s (2.32)

and

ap(2) gy (@) (3)

{J,g+2} -
% = - 20 Pr3lgen, gea41} (Y

(3)
T 20 Piyigen,gear(D

j>2. (2.33)
We now define the conditional probability q(f) to satisfy

(2) = p(1) 5
P{J,J+2}(g) - P{J}(O) Q(z)- (2.3“)

the quantity q(&) is then the probability that a site is
vacant, given that a silngle site & sites away 1s vacant,
1rrespective of the condition of the intervening sites.
(2) (1) =
For ampl P =P .
or example, {1,u}(9) {l}(o) q(3) Using this
definition, we can write the triplet vacancy distributilon

as

P§;2J+I,J+z}(g) = PE}%(O) a(1l)q(e-1). (2.35)

Substituting this result into Eqns. 2.32 and 2.33 and

rearrangling, we obtailn

9@ - _ 5 1) (2.36)

and Q%{J’“—) = - 20 §(1)F(2-1). (2.37)
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Dividing Eqn. 2.37 by Egn. 2.36 and introducing the new

variable x = 2(q(1l)-1), we have that

= (g _
498 - 3 (s-1), (2.38)
which has the solution
= 1 xz
q (2) = e%-l(x) 59T (2.39)
n L
Here en(x) = ) %T is the trunceted exponential polynomial
=0

of degree n. Substituting this result into Eqn. 2.33, we

have that
L

PE2) a1 (Q) = PEIIO) (eq () + 3 5P, (2.40)

Upon obtaining qq from Eqn. 2.28 and equating thils result

with Eqn. 2.39 for r=1 we find that x = &n (1~-8),.

The Infinite Lattice with a Continuous

Distribution of Sites

The distribution of vacancies on a line (a line being
a lattice with a continuous distribution of sites) can be
calculated as a limiting case of the distribution of
vacancles on a discrete space-filling lattice, or it can be
obtained directly by the application of the general model
to a continuous lattice. In the following discussion, the
general model will be applied to the infinite line to

describe the kinetics of space-~filling events with a blocking
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size of length a. The saturation limit of this continuous
hodel wlll then be compared to the saturation on a discrete
lattice in the 1imit.that the event site spacing goes to
zero.

Consider an infinite lattice over which events of length
a can be continuously distributed. An event can randomly and
lrreversibly occupy a line segment of length "a" provided
it does not overlap events which have previously occurred.
We define P(L) as the probability that a line segment of
length L is vacant, and odf as the transition rate of an
event onto a line segment of length df% if no previous event
blocks the transition. The time rate of change of P(L) for
L>a 1s glven by the rate of transition onto the line segment

[-L/2,L./2]. This can be written

(L-a)
2 a
Q%é&l = -0 J de P(L) - 20 f de P(L+%), (2.41)
~(L=-a) o
2

where the 1integrals replace the sums of the discrete model
(compare to Eqn. 2.15). The first integral in Eqn. 2.41
gives the rate of addition of events lying totally within
the segment [-L/2,L/2]. The second integral gilves the rate
of addition of events only partlially overlapping the line
segment (see Fig. 2.3). Since P(L) is not a function of the
Integration variable 1n the first integral, thils integral

can be expllcitly evaluated to obtain
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Figure 2.3. Possible configurations of an event of length a
on a line segment of length L. In the first
configuration, L>a and the event lies entirely
on the segment. In the second configuration,
L<a and the event encloses the entire segment
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a
dgéL) = -(L-a) o P(L) - 20 f de P(L+R), L>a. (2.42)
0

The remaining integral will be evaluated later.
When a>L, the time rate of change of P(L) is given

by (a=L)

2 a
dP(L) _ _, J dr P(a) - 20 f de P(a+l), a>L. (2.43)
- O

at
-(a-L)
2

Here, the first integral gives the rate of addition of
events which totally encompasses the interval [-L/2,L/2],
while the second integral gives the rate of addition of
events which only partially overlap the interval (see

Fig. 2.3). Once again, the first integral can be evaluated

explicitly to yield

L
dP(L) . _ (a-L) o P(a) - 20 f d% P(a+L), 2.044)
o) a>L.

Equations 2.42 and 2.44 correspond to the hierarchy defined
by Egns. 2.14 through 2.16 and can be solved 1n an analogous
fashion. For L>a, the conditional probability B(L|a) is

defined by
P(L) = P(a)B(L|a). (2.45)

It is the probability that the entire interval of length L

is vacant given that an interval of length, a, (which can
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be on eilther side) is vacant. If we differentiate with

respect to time and make use of Egn. 2.42, we obtain

a
dségla) = - (L-a)oB(L]a) - 2 ¢ f de[B(L+2|a)
O

- B(L+a)B(L+ala)]l. (2.46)

By analogy with the solution of the discrete hierarchy, we

propose that
B(L|a) = e0(L-2)T (2.47)
1s the solution which satisfies the houndary condition

B(L)a) = 1 at t=0. This result can be verified by noting

that

B(L+&]a) = o~0(Lt2-a)t _ -o(L-a)t_-o(&+a-a)t

= B(L|a)B(2+ala), (2.48)

and substituting this result into Egn. 2.46. Using
Eqns. 2.45 and 2.47 we can explicitly integrate Eqn. 2.44

to obtain
dP(L) _ 2 -oLt
5t = - 0 P(a)[(a-L) + == (1 - e )1, (2.49)
a>L.
For L=a, both the equations for a>L and L>a give
dP(a) _ - 20 -cgat
at = ot P(a)(l - € )3 (2'50)
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which can be integrated to obtain

exp{—2f(dat)}.

P(a)

Here,

X
£(x) f dy % (1 - ey,
0
Substituting Eqn. 2.51 into Eqn. 2.49 yields

dP(L) - _g exp{-2f(oat)}[(a-L)

dt
2 -oLt
+0_t—(l-e )]:
which on integration gives
t
P(L) =1 -0 f dt' exp{-2f(oat')}[(a-L)
0 2 Lt
-0
tSET (1 - e )1,
a>L.

(2.51)

(2.52)

(2.53)

(2.54)

Equations 2.45, 2.47, 2.51 and 2.54 give the distribution

of any length of vacant segment on the infinite line for

the events which have a blocking potential of length a.

We now wish to calculate the probability of any point

not being covered by an event at saturation. From Eqn. 2.54,

P(0), the probability that any glven point on the line is

vacant, 1s given by

cat
P(Q0) =1 - dt' exp{-2f(t')}.

(2.55)
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Thus, in the 1limit as t-»w, the probability of any point on

the lattlice remaining empty i1s

P(0)gap =1 - f dt exp{-2f(t')} » 0.25502.  (2.56)
0

Thlis result has been previously obtained by Rényi (15) and
others (16,18).

The saturation vacancy density on the infinite line
will now be shown to be equal to the saturation vacancy
density on the discrete lattice in the limit r+~. To this

end, the saturation limilt of the discrete lattice can be

written as

1 r
11m P2 (0) = 1 - 1im (r+1) f dq exp{2 J (q*-1)}
oo oo 0

sat
=1

1 r
1 - 1limr f dq exp{2 } (qz—l)}.(2.57)
=) 2=1

We define a new variable x by x = (1l-q)(r+l), substitute

1t into Eqn. 2.57, and expand the argument of the exponent

to obtain
r 00
Péié(g) =1 - iig f dx exp{-2 fn x - 2 ] % (1 - %)2
]
-2 [ ] - 2nrlh (2.58)
2=1
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The first sum in the argument of the exponent can be

rewritten with the ald of the Euler-MacLaurin sum formula

(41) as follows:

T 1 X\ & _ 1 X\ % 1 X\ T
zzr'ﬂj(l——f)—fdlz(l—g +-2—r'(1~’l:;
r
+ Q(r ?), (2.59)
2

where Q(r-z) represents terms to order r © and smaller.

However,

o 2' (o]

1 X _ X
f daf T (1 - 'l:;) = f dag T exp{? n(l - I')}
r r

= - - X
El( r n (1 r,)), (2.60)
where El(X) [ dt
X
Equation 2.59 can then be written

-t
is the exponential integral (41).

@D

-5 rma-3H+a-HT

Ne~18

+ 9(r %)  (2.61)

and substituted into Eqn. 2.58 to obtain

r
Pééé(o) =1- iig f dx exp{-2 &n x - 2E,(-r &n(1l - %))
-fa-5H"- o § L _onr]} (2.62)
r r 2=l£ s .

where terms to the order of r—2 vanish in the limit as r-w.

In this same limit the relations
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lim (1 - %7 = ¢7* (2.63)
T+o0
lim X -
oo (=r &n(1l - 'r-,)) = X (2.6k)
v o1
and lim | } T - % rl =7y =Euler's
r+o [ &=1 Constant (41) (2.65)

are applicable. Thus,

11m (1) (0)

Lim sat 1- f dx exp{-2[&n x
0

+ Eq(x) + v]1},

=1 - f dx exp{-2 Ein(x)}, (2.66)
0

(1 - eY). 1In comparing this result

<=

X
where Ein(x) = J dy
0

with Eqn. 2.56, we find that

Lim Péi%(O) = P(0)_ ;- (2.67)

This rather lengthy analysis shows that the continuous
model can also be treated as a special case of the model on

a discrete lattice.

The Semi-Infinite Lattice

The mathematilical approach used to derive the kinetic
equations for the iInfinite discrete lattice can also be used

to develop the equations for the linear semi-infinite
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lattlce. The semi-infinite lattice can be described as a
lattice which has a definite starting polnt and extends to
infinity in one direction. For convenlence, the model will
only be developed for lattice events with a 1lst n.n. blocklng
potential in this section and the one that follows.
Extension to events with a general blocking potential is
straightforward.

Consider an infinite array of equivalent sites on a
space-~-fi1lling lattice with a definite left hand end point.
Let the sites be labeled sequentially, with the left end
site being number 1 (see Fig. 2.4), and let Pij)(g) be the
probabllity that j consecutive sites are vacant, beginning
with slte 1 as the leftmost point. It 1s necessary to
speclfy the locatlion of the configuration of sites in the
distribution functions because of the influence of the end
site on the distributions. The time rate of change of
Pil)(O), the singlet distribution function on the first
space-f1lling site, depends only on the rate at which
transitions are made on the pair of sites 1 and 2 (i.e., on
the event lattice site farthest to the left) because there

are no left neilghbors to site 1. This kinetilic equation for

{1 (0) 1s

(1)
aps+7(0)
___—clit =-0 P§2)<Q> =~0 P§1)<0>a(1), (2.68)

where, as before, q(J) 1s the conditional probability on
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Figure 2.4. The semi-infinite and finite event and space-
filling lattices
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the infinite lattice that a site i1s vacant given that a site
J lattice vectors away 1s also vacant. Note that this
conditional probabllity does not depend on the position of
fhe sites relative to the end site. Thils 1is true since the
conditioning site is to the left or terminal side of the
lattice site of interest (lL.e., the slte at which the
probability of a vacancy is of interest). The conditioning
site blocks the site of interest from the influence of the
end site. Condilitional probabilities conditioned on the
terminal side of the seml-infinite lattice are therefore not
a function of position on the lattice and are equal to the
corresponding conditional probabilities on the infinite
lattice. Of course, we have given here only a heuristic
argument, but this result can be easily proven rigorously by
explicitly writing the equations governing the time evolution
of the conditional probabilities. However, a conditional
probability defined such that the conditioning sites are to
the right or infinite side of the lattice 1s not independent
of position on the lattice because the site of interest is
not blocked from the terminal site by a conditiloning site.
These conditional probabillities are denoted by Qk(z), where
subscript k 1i1s the relative separation of the conditioned
site and the terminal site, and as in Egqn. 2.34, & is the
relative separation of the conditoned site and the site of

Interest. Expressions relating the conditional probabilities
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conditioned to the left and right are easily derived since

P{2) (@) = BII(0) Qy, ()

{3,348 J+h
- 2{P )3, (2.69)
and thus
Q (2) P @R (2.70)
(j+2-1) T (D |
. Py4(0)

which clearly depends on the position of the end site since
Pgl)(o) and Pgii(o) depend on the end site position.
Now, dividing Eqn. 2.68 by Pil)(o) and introducing the

new variable, z = q(1l)-1, we have that

a in Pil)(O) ]

3z =1, (2.71)
which has the solution
Pil)(O) = eZ. ' (2.72)

From Eqn. 2.28 for r=1, we have that q(l) = l+z = 1
+ % ¢n(l-6) and therefore Pil)(o) = e? = (1—6)1/2.

a result that i1s to be expected if we conceptually split an

This is

infinite lattice in two at a particular site. If the space-
filling site at the split i1s vacant then it must be that
the two event lattice sites on either side of this site are

vacant and vice versa. But these two event probabilities

are just equal to the probabilility that the end site of the

corresponding semi-infinite lattice is vacant. Therefore
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(1-8) = p{1)(0)2, (2.73)
or
Pil) (1-0)172, (2.74)

which 1s the desired result.
The kinetic equatlon for the singlet distribution on

site 1, when i¥1, is given by

(1)
dPy (0)

= -0 P§2>(g) -0 P(2)<o)

- o a (2P 0) + {2 c0)). (2.75)

Since the right hand side of these equations involves only
Pil)(o) and P(l>(0), these equations can be successively

solved starting with 1=2. The general result i1s
(1) = o2

where, as before, ei(z) is the truncated exponential poly-
nomial. In the limit as i-+w, ei(z) = ez, and P(l)(O) + e2z
= (1-6), as is to be expected. Making use of this result
and Egn. 2.20, we have that the distribution of J adjacent

vacancles on the semi-infinite lattice is

p{(0) = p{1(0)(aI™T = e, (2)(q)?7 . (2.77)

Also from Eqn. 2.70, we have that the conditional
probabllitles condltioned to the right are given explicitly
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by

e, (2) alk)
en(Z)

(2.78)

Q (k) =

As we shall see in the ﬁext sectlion, thilis relatlon can be

exploited to obtaln distributions on the finite lattice.
The Finite Lattice

Finally, let us consider a linear, finite space-filling
lattice of N equivalent sites which 1s labeled numerically
from the left end as in Fig. 2.4. As before, the quantity
Pij)(g) 1s defined as the probability that sites 1, i+1l,...,

i+j-1 are vacant. The kinetic equations for this lattice

are
dPéi)(g) = - o(3-1) P (0) - 0 eI (), (2.79)
J<N,
and Ei-g—)i?“l = - o(n-1) PY(0), J=N. (2.80)
The solution to this last equation i1s clearly
PN (0) = e=0(N=1)E o (g )N-1, (2.81)

Equation 2.79 can be expressed in the form

4o (e903-1)% () (gy) -

= 00 (J=D)T p{3*D) (), (2.82)
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or

dK

aTl = Qg ql KJ"“l’ (2.83)
wnere K, = p{9)(0)e® WD = p{d)0)/(q,)3 2, (2.84)

This is an autonomous system of differential equations in
the cyeclic variable t. Hence, we can divide Eqn. 2.83 by
Egn. 2.20 to obtain

dK
Ezi =Ky (2.85)

in which the time no longer explicitly appears. These
equations can be solved successively starting with the
equation for Ky ., using the fact from Eqn. 2.81 that Ky=1.

This procedure yilelds the general result

i

K ej(z), (2.86)

N-J
or KJ = eN—j(Z)‘ (2.87)
Thus, from Eqn. 2.84

P (o) = (a)?h ey_(2), (2.88)
and in particular,

P (0) = ey, (a). (2.89)

In the 1imit that Now, P§1)<o) + e%, which 1is the result
on the semi-infinite lattice.
Equation 2.88 gives the probabilities that the first ]

sites on the lattice are empty. All other distributions on



13

the finite lattice can be obtained from Egn. 2.89 and the
conditional probabillities for the semi-infinite lattice.
As before, we can use the fact that a conditioning vacancy
blocks the effect of an end site to obtain two expressions

for the pailr distribution function

Pffzj}(g) = Pil)(O) Q1 (3-1)

= p(1)

Substituting Egn. 2.78 and Eqn. 2.89 into this result we

find that

2 =
P{2(0) = ey_(2) ey y(2). (2.91)

This solves the kinetic problem on the finite lattice since
any distribution can be written as a product of Egn. 2.91
and condltional probabilities of the form of Egn. 2.78.

We now wish to calculate the mean number of vacanciles
on the lattice, A, and the dispersion in the number of
vacancies, Ope Let Xs denote the condition of site 1, where
xi=0 if the site 1s vacant, and Xi=1 if the site 1s occupiled.
The average number of vacancles on the lattice of length N

1s then

fo =
It
oz

@) | (2.92)
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where the bar denotes an ensemble average. But using the

fact that the average of a sum is the sum of the averages,
Y O - v (D
A= 7 (1-x,) = ) P, 77(0). (2.93)
= =1

If, for convenience, we limit our considerations to large N,
then over most of the lattice Pil)(O) can be approximated by

P(l)(O) and A 1s approximately glven by

A = NP<1)(O), (2.94)

which at saturation is Ne~2. This is the standard result
we have mentioned several times previously.

By definition, the variance is given by

2 _ 2 2
N
where, 1in this case, FN = ) (1—xi). On expanding Eqn.
i=1
2.95 we obtain
N N
0, 2= 1 1 (1-x%,) (1-%) - A%,
i=1 j=1
By using Eqn. 2.93 we have that
2 _ ¥ o) (2) 2
o, = I PyT(0) + 2] ] Py j}(g) - A%, (2.96)
i=1 1 3j>1 3
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Now
N N N
A2 = Z z P§l)(O)P§l)(O) = Z P§l)(o)
i=1 j=1 i=1
r2 ] 1 pPr{P), (2.97)

i j>1
and after substituting this result into Egn. 2.96, we

obtain

2 _ (1) (1) (1)
0," = y {?i (0) - By (O)PJ (04

i=1
(2) (1) (1)
+ P (0) - P (0)P (0)¢ . (2.98)

For large N we note that P§l)(0) £y P(l)(O) = (1-6), and

P%izj}(g) = P(l)(O)a(J-i), and so, in this limit,

N-1 N

0,2 = No(1-0) + 2(1-8) [}  [d(3-1)
i=1 J=1+1
- (1-8)]. (2.99)
N-1 N N-1 N-i
Now § y = 3 ) , where k = (j-1). Using this

i=1 j=i+1 i=1 k=1
result and interchanging the order of summation, we can

perform the sum over 1 to obtaln

P N=-1
- (o) [Ne + 2 [ (N-i)[ay (k) - (1-6)7].(2.100)

g
A k=1

Since N 1s assumed to be large, this expressilon can

be written

o]

0A2 x N(1-e)(e + 2 kzl [ql(k) - (1-6)]}. (2.101)
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However, from the semi-infinite result, we know that

1 xk

q(k) = e, _;(x) + 5 77 and (1-8) = &

, Where x = &n (1-6).

The incorporation of these results into Egn. 2.101 finally

leads to
0,% % N(1-0) (2 Y e .(x) - ex]] (2.102)
A by okl >
or 0A2 % 2N(1-6)(=-x)(1-6). (2.103)
-2

Now at saturation (1-6) = e ©, and hence in this limit
x = -2, Thus we find that in the limit of large N, the

saturation value of the dispersion is

0.2 5 UNe~ . ‘ (2.104)

A
This result agrees with the results previously obtained by
other authors (10,11,18). Two points should be noted here.
First, taking the large N limit beginning with Egn. 2.99 is
only for convenience -- the method is valld for any value

of N. Secondly, the variance calculation through Eqn. 2.101
can be applied for events with any blocking potentlal.
_However, our results are valld only for r=1 since we use
a(2) and the saturation covering fraction appropriate to

that problem.
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CHAPTER 3. COOPERATIVE MODELS ON AN INFINITE LATTICE

Cooperative models, describing the kinetics of systems
of interacting events, can be derived as direct extensions of
the non-cooperative models discussed in the previous chapter.
For cooperative models, events which have occurred on the
lattice affect the activation energy barrier for the
occurrence of events on nelghboring sites. The rate of
transition can be either increased or decreased. A negative
change in the activation energy will increase the rate of
transition at a site, while a positive change will have the
opposite effect. For the sake of simplicity, it is assumed
that the contributions of neighboring sites to the acti-
vation energy are palrwise additive, although the mechanistic
nature of the interaction and its expliclt numerical value 1s
arbitrary. Thus, the net change in the activatlion barrier
due to the distribution of events near the site of intefest
is obtained by summing over the contribution of all
neighboring sites to the site of interest. For our numerical

computatlions we shall assume that the transition rate has the

Arrhenius form

T = A exp{-BE_ .}, (3.1)

act
where A 1s the pre-exponential frequency factor (which is
assumed to be independent of events on neighboring sites),

B = (kT)'l, and E, . 1s the energy of activation for the
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transition including the contributions from the events in the
vicinity‘of the site. This particular form 1s speclfied for
numerical convenlence and has little bearing on the general
mathematical development.

In thls Chapter, we consider events on an infinilte
linear lattice. First, we discuss the case where events have
a 0th n.n. blocking potential and a lst n.n. cooperative
interaction. Next, we consider the general equations
governing the time dependence of the distributlon of events
for the case of an rth n.n. blocking potential and an
r+lst n.n. cooperative interactions (cf. Chapter 1 for the
convention used to describe the range of the interaction).
These equations are solved for the case when r=1 (i.e., the
interacting dimer problem). Some general considerations of

the case with longer range interactions are also dlscussed.

Cooperative Events with a 0th n.n.

Blocking Potential

We now discuss events on a linear lattice with a Oth
n.n. blocking potential and 1lst n.n. cooperative interaction.
This model can be used to represent such physical processes
as the adsorption of atoms onto a linear substrate or the
change in state of a monomer unit of a polymer chain. Since
we have a 0th n.n. blocking potential, the event lattice and
space-f1lling lattlce are i1dentical, as discussed in

Chapter 2.
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Again we consider an Infinlite linear lattice composed of
equivalent, equally spaced lattice sites. We now introduce a
new quantity, Tij, which 1is the transition probability at a
site with left 1lst n.n. site in condition 1 and right 1st n.n.
site in condition J, where 1,J = 0 or 1. In Arrhenius form

with palrwise activatlon energy this can be written

Tyy = A exp{-8(¢i+¢j)}, (3.2)

where ¢i and ¢J are the pairwise additive contributions to
the activation energy due to sites to the left and right,

respectively, of the site of interest. Because of lattice
symmetry, Tij = Tji. The transitlion probability can now be

written in the form

o exp{-B(1+]) (6,40} = o(2+a)**d, (3.3)

Tij

= A exp{-28¢,} (3.4)

Q
111

where T

00

is the transition probability of the noncooperative models

discussed in Chapter 2, and
o = exp{—8(¢l-¢o)} - 1. (3.5

The quantity o reflects the cooperative influence of an
event at one site on the transition probability at a
neighboring site. For the noncooperative case a=0, for a
positive Interaction (corresponding to a negative change 1n
the activation energy) a>0, and for a negative interaction

(a positive change in the activation energy) o<0. Table 3.1
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i1llustrates the variation 1in activation energy with o. The
value of ¢0, the contributlion of a nearest nelghbor vacancy
to the transition activation energy of a sitey, 1s a measure
of the temperature dependence of the initial rate as can be
seen from the equation do/dT = 2¢0A(kT2)-1exp{—28¢0}. This
parameter can take on values representing an activated
“transition (¢O>O) or a nonactivated transition (¢O=O). The
effects of thilis parameter are eliminated 1f the kinetic
equations are solved as a functlon of the dimenslonless time
Toot- Hence, ¢O sets the time scale of the kinetic process
but has no effect on the various distributions of interest

when they are considered as functions of the density of

events.

Table 3.1. The variation of the activation energy difference
(¢1—¢0) with the interaction parameter o, at

T = 300°K
o (¢l—¢0), kecal/mole o (¢l—¢o), kcal/mole
0.0 0.0 0.5 -0.242
-0.1 0.063 1.0 -0.413
-0.3 0.213 2.0 -0.655
-0.5 0.413 3.0 -0.826
-0.7 0.717 5.0 -1.068
~0.9 1.372 10.0 -1.429

-0.99 2.744 100.0 -2.750
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It has been assumed in our expressions for the rate
constants that the pre-exponential frequency factor, A, 1s
not a function of event configuration. This assumption would
break down if the local distribution of events had an
entropic effect on the transition probability at the site of
Interest. When a multistep mechanlism 1s represented as a
single event, it 1is necessary to introduce an effective pre-
exponentlal factor, A, which 1s an implicit function of time.
An example of this willl be considered in Chapter 5. However,
for the present, we will consider A to he a constant that is
independent of configuration and time.

As previously mentioned, the mechanism through which an
event changes the activation energy for transition at a
neighboring site 1s immaterial to the mathematical develop-
ment of the models. It 1s, however, of interest to note that
these changes can be attributed to a variety of mechanisms.
For example, the condition of a neighboring site can directly
interact wlth the site of interest to lnduce a temperature
independent change 1n the activation energy. The inter-
actions can also be transmitted through the lattice with
mechanisms of varying degrees of complexity. These effects
can be temperature dependent according to the specific
mechanism; examples are changes due to an lncrease in the
helicity of a polymer in the case of the denaturation of a

polypeptide (see Chapters 1 and 6) or the shift in the Fermi
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level of the electrons near the surface of a semiconductor

in chemlsorption.

We now derive the kinetic equations for this model.

(1) (1)
The time rate of change of f£(0) = P(0) is given by

i0) (3) (3) (3)
Tt = - TOOP(OOO) - 2T01P(100) - TllP(lOl). (3.6)

By expressing all probabillities in terms of vacancy

probabilities as discussed in the prevlious chapter, we have

that
(1)
(1) (2)
dg’EO) = = 111P(0) = 2(ryy-7,4)P(0)
(3)
= (TOO_2T01+T11)P(9‘)’ (3'7)

(n)
where as before P(0) 1s the probability of finding n

adjacent vacant sites. The kilnetlc equatlons governing the
time evolution of other distributions of wvacant sites are
derived similarly, and as in the case of the noncooperative
models previously developed, the equation for consecutive

vacancles form a closed hierarchy. Specifically,

(2)
(2) (3)
Q%%QL = - 2T01P(g) - 2(T00-101)P(Q), (3.8)
(n)
(n) (n)
and Q%%Ql = o (n-2)TOOP(Q) - 2T01P(Q)
(n+l)

- 2(15=T7)P(Q) 5, n22.  (3.9)
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The kinetic equations for event distributions not decom-
posable Into distributions of consecutive sites are derived
in an analogous fashion. These equations, of course, form a
larger hierarchy; they are discussed later in this Chapter.

As in Chapter 2, conditional probabilities can now be
introduced through the defining equation

(n+1) (n)
P(0) = P(0) qp (3.10)

where the subscript, n, on a, refers to the number of
conditioning sites. On differentiating this expression with
respect to time, substituting Eqns. 3.7 and 3.8 into this

result, and rearranging, we obtalin the alternate, equivalent

hierarchy
dql
ag = - (2149-19709; = 2(tg0-Tp1)919; (3.11)
2 2
T 2(1g1-T9700y" * (19p=21p1+79 104y "5
and
dqn 2
T " " Too 9n ~ 2(1ppmT07)(ap8p4179, ) > n22.(3.12)

The solution to equation 3.12, which satisfies the boundary

conditions qj=l at t=0, is clearly
d, = o> (3.13)

for all n>2. Equation 3.12 then becomes

Qs

9
———-—:_T

T (3.14)

00 92>
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which has the solution

q, = e T00F, (3.15)

With this result we have exactly solved the alternate
hierarchy for all cases where n>2.

The remaining kinetic equations in the hierarchy (Egns.
3.7 and 2.11) form an autonomous system of equations in the
cyclic variable t., As in Chapter 2, the explicit time
dependence of these equations can be eliminated by dividing
each equation by the truncation equation, in this case,
Eqn. 2.14. We can then solve Eqn. 3.8 as a function of ds

to obtaln the result

(2)
P(0) = q,°P0L exp{2(l-py;)(ay-1)}, (3.16)

where Po1 is the reduced rate constant TOl/TOO. Equation

3.11 1s solved in a similar manner. After dividing through

Egqn. 3.11 by Eqn. 3.14, we obtain

dq,
aq, = (2Po17P11)91/9p - 2(1-Pgy)qy
(3.17)

2 2
* 2(pgy=Pyp)dy /Ay * (1-2007%P11)9; "

where P11 is the reduced rate constant Tll/TOO. This

equation has the general form

dq

1 _ 2
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which 1s one form of the Ricatti equation (42). Introducing
the new varlable r = ql-l, rearranging and solving the

resulting equation, we have that

4y = Q§2p01'p11)exp{2(1-001)(qz—l)}-

dp
f dq' exp{2(l-901)(q'—l)}{e(pOI—pll)q'(2p01'911'1)
1
-1
+ (1-200,+p )" (2PO1PID)Y 4 1] L (3.19)

Finally, Egn. 3.7 can also be put into the form of the

(1)
Ricatti equation and solved for P(0) as a function of Py
However, instead of directly solving this equation, we can

utlllze previously derived results to obtain an expression

(1) (2) (1)
for P(O)2 )We k?o¥ by Eqn. 3.10 that P(0) = P(0)q,, and
1 2
hence, P(0) = P(g)ql—l. Equations 3.8 ?n? 3.9 are now
1

substituted into thils result yielding P(0) as a function of
dss namely
(1) -1 2Pg1

P(0) = [a17" a, = exp{2(1-pyq)(ay=1)}.  (3.20)
Equations 3.15, 3.19 and 3.20 (or equivalently, Egns. 3.15,
3.16 and 3.20) completely solve this kinetic model for an
event with a 1lst n.n. cooperative ilnteraction. The time
dependence of these equations 1s establlished by eliminating

a5 using Egqn. 3.15.
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The integral in Egn. 3.19 can be numerically integrated
to satisfactory accuracy using a twenty point Gauss-Legendre
integration scheme. The resulting expressions for q, can
then be used to evaluate Pgég by means of Egn. 3.20. The
results of these calculations are shown in Figs. 3.1 and 3.2.
The particular values of o used in these calculations have
been chosen to represent moderate changes in the activation
energy of approximately equal magnitude, but opposite sign.
Hence, as noted in Table 3.1, o = 1.0 1s equivalent to
(¢1-¢0) % -=0.413 kcal/mole, and o = -=0.5 is equivalent to
(¢1~¢0) r 0.413 kecal/mole, for T=300°K.

The use of the quantity q, as an independent variable
in this discussion is mathematically convenient because 1t
allows us to easily solve the kinetic equations; however,
it 1s often desirable to express these results in terms of
the physically more intuitive variable Pgég as shown in
Figs. 3.3 and 3.4. It is seen that the probabllity of a
distribution of vacancies at a given covering fraction
(recall that 6 = 1—PE%§) is 1ncreased or decreased relative
to the corresponding result for the noncooperative case
according to the value of o. For o>0, an occupled site
favors the transition of the neighboring sites, and events
tend to occur in clusters, thereby increasing the probability

that a site i1s vacant given that one or two conditioning

sltes are vacant. For a<0, the occupation of a site
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Figure 3.1. The dq conditional probability as a functlon
of a5 for the case where r=0
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)

P

Figure 3.2. The density of vacant space-filling sites as a
function of Ay where r=0
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Figure 3.3. The a4 conditional probability as a function of

(1)
P(0), where r=0
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Figure 3.4, The ds conditional probabllity as a function of
(1)
P(0), where r=0
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disfavors the transition of the nelghboring sites, which
results in a dispersal of the distributlon of events as
compared with the noncooperative case, and leads to smaller
values of aq and s at the same density of events. It is
evident from these figures that all distributions of
vacancles go to zero at lattice saturation, i.e., ng; = 0.
This 1s to be expected since the r=0 blocking potential does

not exclude neighboring siltes from transition. This is true

for all finlte interactions; however, in the limit as ar-1

(1.e.

s ¢1—¢0 = o), this model reduces to the noncooperative
model with 1lst n.n. blocking potentials as dilscussed in
Chapter 2.

Instead of numerically integrating the quadrature in
Eqn. 3.19, we can directly solve the truncated hierarchy of
coupled equations uslng other numerical techniques. We note
in comparing Egqns. 3.7, 3.11 and 3.14 with Eqn. 3.3 that the
rate constants Too* To1 and Ti1» which govern the time
evolution of the distributions, dilffer from one another by
powers of (l+a), and in many physically interesting problems
this quantity can be large. Differential equatlions are said
to be stiff i1f they contaln two or more rate constants that
vary wldely in magnitude. The solution to such equations
contain terms that change rapidly, with a small change 1n
the independent variable, and others that change much more

slowly. The solution is then typically a function which
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changes rapidly in a small portion of the domain of the
independent variable and much more slowly elsewhere. (For

example; the equation dy/dx = -{100 e~100% 0.05 e—O’OSX},

which has the general solution of y = 100X e-0.05x’ is
stiff.) Stiff differential equations are not efficiently
solved by standard fixed step size methods because of the
strong variations in the behavior of the function and
therefore require speclal techniques. The method we utilize
to solve the kinetic equations is based on a predictor-
corrector method with automatically determined step size
developed by C. W. Gear (43) to solve systems of stiff,
coupled, first order differential equations. In comparing
the Gear method with the Gauss-Legendre numerical integration
of the quadratures, we find that large values of o require an
inordinately large number of integration points (and hence,
the amount of computer time) to adequately sample the

rapidly changing integrand. Numerical solution of the
equations by the Gear method in this range of o is much more
efficient. The subprogram we use to solve the system of
stiff differential equations in this thesis is a version of
the Gear procedure due to A. C. Hindmarsh (44), which will

be referred to as GEAR. This program can be directly applied
to Egqns. 3.7, 3.11 and 3.14 to obtain the distributions

directly as a function of the reduced time Toot.
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All distributions of interest are, of course, not

decomposable into distributlons of consecutive vacanciles and

are therefore not determined by Eaqns. 3.7, 3.11 and 3.14.

The distributilon

(3) (2) (3)
P(010) = P(0_0) - P(000) (3.21)

is an important example which arises in Chapter 6. Here,

the symbol (0_0) denotes the configuration where two
vacancles are separated by a site of unspecified condltion.
Such distributions are governed by a set of kinetic equations
which is larger than the previously derived hierarchy of
equations for consecutive vacanciles, and in fact, include
this hierarchy as a subset. The truncation condition,

Egn. 2.13, is applicable to thilis larger hierarchy since P
does not depend on the configuration of lattilice sites beyond
the two conditioning sites. The additional kinetic equations
contained in this second hierarchy (after truncation) are

given below.

(3)
dpé%'92'= ‘2{<Too‘2T01+T11>P(9)q22 + (157-797) P(Q)

(3)
- (157-T777)P(00_0)

(2)
- t,,P(0_0)1, (3.22)
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(3)

(2) (4)
TEE = - (1992101 #131)P(@)8,% = (153-1;1)P(0)
(3) (3)
- (T4g=Tp1)P(00_0)a, - (2 5~ 11)P(00_0
(3)
- (2T01—T11)P(00_0)
(4)
0 (Tgy~T91)P(00_00), (3.23)
and  dP(00_00) (2) 3 (4)
—gg—— = —2{(tyy-147)P(Q)a,~ - 274, P(00_00)
()
We now define the following conditional probabilities:
(2) (1)
P(0_0) = P(0)vy, (3.25)
(3) (2)
P(00_0) = P(Q)v,, (3.26)
(4) (2)
and P(00_00) = P(g)v2v3. (3.27)

When these relations are differentiated with respect to time,
substituted into Eqns. 3.22, 3.23 and 3.24 and the result
rearranged, we obtain the alternate, equivalent set of

differential equations

dvq 2
5= = ~2(140=2T1 7110939, = 2(Tgq~T17)4;9,

= 2(tgq=Ty)dqVy = TygVp + 2(Tp=Ty70d9Vy

+ (19p=2Tg1+717)d79,Vy (3.28)
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2 - . 3 - 2 -
g = ~(1g0m2Tg1* 7117957 = (Tp0=Tgp)dp" *+ (Tgp=T1)V,4;

- (TOl—Tll)V2V3, (3.29)

3 - _ _ 3 - - - -
and ¢ 2(T40=Tp1)05 /vy = (2747=T17)V5 = (154=Tg V34,
+ (TAn=2TaatT-)V,Q 3/v + (Tan=T-,)V,Q 2/\)
00™2T01%T11)V397 /Yy 00" T11/ V3% /Yo

.2, (3.30)

+ (7 3

01" "11

These equations, along with Eqn. 3.14, form a closed,
coupled set of differential equatlions that can be solved
analytically with the solutions expressed as quadratures.
They can also be solved numerically via the GEAR program.
These functions are plotted as a function of P%ég in

Fig. 3.5. The solutions to Eqns. 3.28, 3.29 and 3.30, and
the solutions to the initial hierarchy of equations (Egns.
3.7, 3.11 and 3.14) completely describe the kinetics of
distributions of configurations of sites containing a
single, enclosed, unspecified site (as well as the distri-
butions of consecutive vacancles). The configurations of
vacant and unspecified sites of Eqns. 3.28, 3.29 and 3.30
do not exhaust the possibilities of physical interest which
give rise to fundamentally different kinetic equations

(L.e., require the definitlon of new conditional

probabilities). Every configuration that begins (at both
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function of P(0), where r=0
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ends) with two vacant sites followed by an unspecified site
glves rise to a hierarchy of equations which couple all
configurations which can be obtained from the initial
configurations by:

1) replacing any internal unspecified site by a

vacancy, or

2) replacing an end vacancy at either end by an

unspecified site.

The truncation condiltion of Egn. 3.13 can be applied in
any situation where three or more consecutlve vacanciles
occur. Thus, as we have seen, the configuration (00_00) of
Eqn. 3.24 gives rise to the hierarchy which couples the
configurations (00 _00), (0 _00), (0_0), (00), and (0). As
another example, we can consider the coupling scheme for the
configuration (00_0_00). On application of the above rules,
we find that this configuration is coupled to the
configurations (0_0 _00), (0_0 0), (00_00), and all
configurations from the first example. There is no largest
hilerarchy, but each hilerarchy contains a finlte number of
configurations (after truncation) and larger hierarchies
contain totally imbedded smaller hierarchies. It 1s
important to realize, however, that the same truncation
condition (;,g., Egn. 3.13) 1s used to exactly truncate all

of the hierarchies.
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Cooperative Events with a 1lst n.n.

Blocking Potentilal

Another cooperative model of specific interest i1s the
model describing the kinetics of events exhibiting a 1lst
n.n. blocking potential and 2nd n.n. cooperative interaction.
Physically, this model is of interest because it 1s applic-
able to the description of such problems as the cooperative
adsorption of homonuclear diatoms or the cooperative
reactionAof pendant groups on a substrate. Theoretically,
this 1is the simplest cooperative model which saturates at an
event density of n<1‘(i.g., isolated vacancies can remain at
lattice saturation).

The kinetic equations for the distribution of events in
this model are derived using considerations similar to those
employed for the previous model, and we therefore present
the kinetlc equations for the distributlons of wvacancies on

the space-filling lattice below, without derivation.

(1)
(2) (3)
(4)
+ (199=2Tg 77 P(Q) ], (3.31)
(2)
dP(0) (2) (3)
T = ~T11P(0) + 2(214;,-14,)P(0)

(%)
+ (3rgg-ltgq*Ty)P(Q), (3.32)
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n
and dng; = -(n-3)t ngg - 2t ngg - 21 ngjl)
dt 00" *= 01" *~ 00" *=
(n+2)
-2(TOO—T01)P(Q) » n23 (3.33)
(n+1) (n)
With the substitution P(0) = P(g)qn we can derive equations

(1)
for P(0) and the conditional probabilitiles, Ay, We find that

the equatilons for s where n>3, are all satlsfied by the
same function when the boundary condition qn=1 at t=0 is
applied. As in the previous section, this allows us to
truncate the hilerarchy exactly to obtain the set of four

equations;

(1) (1)
dP(0) - _5p(p){c + 2(1y,=Tq7)
at 1191 01"%11/%19%
+ (T00—2T01+T11)q1q2q3}, (3.34)
dq1 y
ag = —9plryq+a(2rgyy-199)a, + (Brpg-ltg*77)0,05
= 279909 = H(1pp=Tq5)
- 2(TOO—2T01+T11)q1q2q3}, (3.35)
da, 2
g = —9plerggtergaag + 2(rgp-Top)asn Ty,

- 2(2t4-tq9)ay = (31p0-Htgg

+T11)Q2Q3}: (3-36)
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dq3 —Toot
and at = —T00q33 qn=Q3=e ’ ni3’ <3'37>

where, 1in the latter equation we have also included the
truncation condition.

The closed form solutions to this kinetic hilerarchy are
obtained by dividing Egqn. 3.37 into Egns. 3.34, 3.35 and
3.36 and solving the resulting equations as a function of
q3. As 1n the previous sectlon, these equations can be put
into the general form of the Ricatti equation and solved
directly using standard techniques. The solutions in terms

of quadratures are presented below:

(2p57-Py7)
1, = ay 08 M expla(ag-1) + (1-p;) (a5°-1))

q
2(2p,=P~4) (2pn7=P 7))
x !dq'{ Oé, 11° (3—“901-0114 q' 01 "1l exp{2(q'-1)

-1
+ (1—901)(q'2—1)} + 1J s (3.38)

P
and ql = Q3 11 exp{2(2p01_p11)II(q3,2001-911-1)

! (204,-P4)
3 ’ 2p11 q' 01 ™11 exp{2(q’~l) + (l_p01)(q,2_l)}
X f dq g’ + S CIAREEE
1
[ Oé' 11 ]+ 2(1-2001—p11)1}q1 11

X exp{2(2001_p11)II(q"2p01_p11-l)

-1
+ (3—“p01—pll)II(ql,2001_011)} + %] > (3-39)
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2(2901-011) (2901"911)

q'

X
where I(x) = J dq'[ + (3-“001~Dll)JQ'
1

« exp{2(q'=1) + (1-py;)(a'-1)},  (3.40)

(3.41)

1}

and II(x,a)

% ' q'?® exp{2(q'—1)+<1-p01)(q'2—1)}
& I(q") ¥ 1 '
1

(1)
The singlet vacancy distribution, P(0), can be obtained

by directly integrating Egn. 3.34, but a simpler procedure is
to solve Eqn. 3.33 for n=3, as a function of q3, with the

result

3) _ 2041 5
P(0) = ds exp{2(q3—l) + (1-p01)(q3 -1)}. (3.42)

) (1)
)

(3
Then, using the definition P(0) = P(O)q1q2 and the expresslon

for qq and ds of Egqns. 3.38 and 3.39, we obtain the result

(1) 20
P(0) = (439, "My O expl2(qg-1)

+ (1-pgp)(ag®=1) ). (3.43)

The quadratures of Egqns. 3.35 and 3.36 can be evaluated to
satisfactory accuracy using a twenty polnt Gauss-Legendre
integration scheme, or the hilerarchy of Eqns. 3.34 through
3.37 can be solved numerically uslng the GEAR program.
Representative results for q3, a5 and q, as a function

(1)
of P(0) are given in Figs. 3.6 and 3.7. The feature of note
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0 -

Figure 3.6. The qy (1=1,2,3) conditional probabilities for a

dimer event (r=1) as a function of the density
of space-~filling vacancles. In this plot
='—O 05
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Figure 3.7. The conditional probabilities a4 (1=1,2,3) as a
(1)

function of P(0), where r=1 and a=1.0
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in these plots is the variation in the (nonzero) saturation
limit with variations in a. For the special case of o = 0.0,
the three conditional probabilitlies are equal and lattice
saturatlon 1s attained at the expected value of

(1)
P(0) = e"? x 0.135. As o becomes positive, the saturation

value of Pgé; decreases due to the increasing tendency of
transitions to occur adjacent to an existing event. This
leads to the clustering of events on the lattice. Indeed,
in the limlt as a»», we see that the rate constants

Po1 = TOl/TOO and Pe1 = Tll/TOO become infinitely large,

and hence transitions effectively only occur on sites
adjacent to events on the lattlce. In this case, the rate
determining step 1s the nucleation caused by the first
event. After this event, the lattice immedlately fills.
Also in this limlt, the infinltely large rate constants

lead to perfect sequentilial transltion of the lattice sites
beginning at the nucleated slte, and result 1n a perfectly
packed lattice at saturation, 1l.e., there are no vacant
space~filling sites at saturation. On the other hand,
negatlve values of o favor the dispersal of events due to
the repulsive interactions. This tends to increase the
saturation limit of Pgég. It can easlly be shown that in
the limit as o+~1l, the kinetic model for thils event directly

reduces to the model for an event with a simple 2nd n.n.

blocking interaction. The extension of this model to
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configurations of vacancles and unspecilfled sltes is
stralghtforward.

The kinetic equations of events with longer range
cooperative interactlons can also be derlived and, under
certaln conditions which we wlll later dilscuss, solved 1n
the manner Just descfibed. As 1s to be expected, the
equations become more complicated as the interaction range
Increases. As an example of such equations, we write gke
first few equations from the hilerarchy describing the |
kinetlics of distribution of events wilth a 1lst n.n. blocking
potential and 2nd and 3rd n.n. cooperative interactions.

In theée equations a slightly different notation is
used for the transiﬁion probabllities for notatlonal
convenlence. Here we let t(1,J) represent the transition
probability for an event with 1 2nd n.n. events and j 3rd
n.n. events, where 1 and j can take on the values 0, 1 or 2.
(Note that this notation 1s unambiguous since it is
impossible to have both 2nd and 3rd n.n. sites occupled on

the same side of the site of interest.) The first few -

kinetlic equations are as follows:

(7)
) = L(1(0,0)-27(1,0)+27(1,1)+1(2,0)+1(0,2))P(0)
(6) (5)
+ 2(1(0,1)+1(1,1)+7(0,2))P(0) - (27(0,1)-7(0,2))P(g)
(6) (5)
- 2(7(1,0)-1(1,1)-7(2,0))P(0_00000} - 27(1, 1)P(0 _0000)

(5)
- t(2,0)P(0 000 0), (3.44)
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(2) (1)
dP(0) 2 apr(e)
at at  ° (3.45)
3 ‘ (7)
and dgé.o_) = -(3'['(0,0)-’4'1'(1,0)-}-1}1'(1,1)-1-1-(2’0)+3T(0’2))P(g)
(6) (5)
+ (67(0,1)+U1(1,1)+67(0,2))P(0) - (61(0,1)-37(0,2))P(0)

(6) (5)
- (47(1,0)-4t(1,1)-27(2,0))P(0_00000) - 47t(1,1)P(0_0000)

(5)
- 1(2,0)P(0 000 0). (3.46)

We defer comment on the solution of these equations until

the next section.

Cooperative Events with an rth n.n.

Blocking Potentilal

The kinetic equations of the previous section are
easlly generalized to describe events with an rth n.n.

blocking potential and r+lst n.n. cooperative interactions.

The kinetic equations governing the time evolution of

distributions of atomic vacancies are listed below.

(1)
(r+1) (r+2)
L0 = (1)1, P(0) - 2(r+1)7,y,P0)
(r+3)

- (r+l)(TOO—2TOi+T11)P(Q) R (3.47)
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(n)
ar(o) n-3 »(r+n-2+1) n-3 (r+n-2)
=l = (T =T ) P(0) -2 P(0)
at To0™"o1 220 -~ T01220 =~
(n+1) (r+2)
~(r+2-n)1,,P(0) -2{(r+3—n)TOl-(r+2-n)Tll}P(g)
(r+3)
—{(r+M—n)TOO-2(r+3-n)TOl+(r+2-n)T11}P(Q) R
2<n<r+2, (3.48)
(n)
(n) r (n+e+l)
and ggégg = =(n-r+2)7,,P(0)-2(ty,~T45¢) L P(0)
r (n+R) =0
-215, L P(0) , n>r+2, (3.49)
2=0

The truncation equation for the exact solution of thils

hierarchy, for general r, 1is given by

dqr+n = dq T
ac dt ~“To09+2°

which has the solutilon

-T~nt

= 00
Qp4n = 9p42

for all cases where n>2.

We now consider the problem of whether any hierarchy
describing the kinetlics of events with an arbitrary
cooperative interaction range can be exactly truncated.
Within the mathematical formalism adopted in thils thesis,

the answer 1s unfortunately no, as we will now show. Let

r+2 . (3.50)

= e s (3.51)



108

us consider an n site configuration of consecutlve vacant
sites denoted by

(0000. . . 00},

x n
where n 1s large, but finite, and x marks the site of
interest. We will specifically examine the lattice con-
figurations in the case where the 1dss of ngg 1s due to an
event overlapping only the end site, because this event
requires the specification of the largest conflguration of
sites, and if this event causes no truncation problems, then
events that overlap more of the n sites won't either. For
an event of length r+1 (which is the length of an rth n.n.
blocking potential) to occur as described above requires

that r sites beyond the end slite of interest are necessarily

vacant, as shown below:

r+l

— A

(r1....1)

(0 0 ... 000)(000 . . . 00).
r X n

However, because of the cooperative interactions we must
speclfy the condition of c+r sites beyond the site of
interest, where ¢ 1is the range of the cooperative inter-

actions. This is i1llustrated below:

(aaa...a)(00...000)(000...00).
X
c r | n
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Here, a denotes an arbitrary site condition. If c¢ is larger
than a complete event (i.e., r+l sites) then the configura-

tion cannot be written in terms of consecutive, vacant site

conflgurations. Hence, the maximum range of the cooperative
interaction for which our exact truncation procedure 1s

applicable is

= +1.
cmax r+l

Thus, for the Oth n.n. blocking potential, we can have only
lst n.n. cooperatlve interactions, which 1s the case we have
discussed. For the "dimer" problem (i.e., r=1), the
cooperatlve interactions can at most include the 2nd and

3rd n.n. sites, etc.

The truncation of hilerarchies of kinetle equatilons for
an irreversible event with 1lst n.n. cooperative interactions
is also addressed in an article by Schwarz (21) in which he
presents a relation, which he refers to as the triplet
closure rule. This relation supposedly allows an arbitrary
distribution of events and vacancies on the space-fillling
lattice to be expressed as a quotient of distributions of
sets of two and three adjacent lattice sltes. If we define
the condiltional probabillities Q(Xilxl’XQ""’xi—l) such that
they satisfy the relation

(1) (1-1)
P(xl,xz,...,xi) = P(xl,x2,...,xi_l)

x Q(xilxl’x2""’xi—l)’ (3.52)
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then the triplet closure rule can be written as

ngg = Pgii,xz,x3)Q(x4|x2,x3)...Q(xnlxn_g,xn_l). (3.53)
In other words, the triplet closure rule states that any
kinetic hierarchy can be exactly truncated through
probabillties that are conditioned on only two adjacent,
consecutive sites of arbiltrary condition. This rule 1s,
however, not exact except 1in those lnstances where 1t is
equivalent to the truncation rules we have already glven.
We will now prove this result.

The kinetic equation governing the dilstributlon of a
general configuration of vacancies and events with 1st n.n.

cooperative interactions on a set of n adjacent sites (n>2)

1s given by
(n)
dP(x) (n+l) n=1 (n) §n+l)
=. =Y o.P(x,) + ) o,P(x,) + o P(x )
ar :Zc 175 1£2 175 xr{+1 v
, (n+l) n-=1 (n) : (n+l1)
=1 oP(x) -] oP(x) - L o P(x) , (3.54)
X 1=2 xn+l

where £J 1s the occupation vector that differs from x by
the condltion of site J, Gi and oi are the transitilon
probabilities for an event on site 1 (these are a function
of the condition of sites 1+l and 1-1 because of the

1st n.n. interactions), ngg is the distribution of the
configuration x (as before), and the sums over xo'and X4

denote a sum over the possible conflgurations of the sites



111

o and n+l. The first three terms of this %xgression are
n

gain terms that describe the increase in P(x) due to the
transition of previously vacant sites to form the

configuration x, while the rem?i?ing loss terms describe the
n
decrease in the distribution P(x) due to the transition of

vacanciles in the configuration x. Note that this equation
on the space-filling lattice 1s analogous to Egqn. 1.8 for
the event lattice. Equation 3.54 can be used to describe
reversible processes with minor changes 1n the definltilons

(n)
of the transition probabllities and P(ghl). As in previous

cases, we now note that

d in Q(x, f n- l) d %n ngg d #n P§§§l)

dat dt dt

(3.55)

Substituting Eqn. 3.54 into this result and assuming for the

moment that the triplet closure rule 1s valid, we obtain

d n Qx |x, 5% ) -5 o Q(xn]xn_g,xn_l)Q(xn+1|xn_l,xn)
dt n Qlx [x, 5%, _7)

QX _q |3 35%, 2)Q(Xpuq [ %55 %,
n-1 Uy 1%, 3%y o)

Q(Xn 2|xn Iy>¥n- 3)Q(xn l'xn 3’xn 2)Q(x Ixn 2°%n- 1)
“n-2 LICHNIPY EPE. 3)Q(xn 1! %y 3°%n- 2)Q(x, Xy 50Xy 1)

+

_ Q(in-Elxn—U’xn—3)Q(xn-1an-3’in—2)
Q(xn-2|xn-4’xn-3>Q<xn-llxn-3’xn-2)
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o Q()_(n—»llxn--3’xn-v»E)Q(xn'1{1‘1--2’3-{1’1-1)
n-1 Q(Xn-llXn-3’xn-2)Q(xn|xn—2’xn—l)

+

-xX Gé Q(xn-§-llxn--1’xn) - Gé—l Q(Xn+1|xn—2’xn—1) (3.56)
n+l

where ii specifically denotes a vacancy on site 1. It is

now clear that with the use of the triplet closure rule

we have reached a contradiction. The rule would have that
the conditilonal probability on the left-hand side depends
only on condltionlng sites Xo_1 and Xp_o5 however, the
right-hand side also depends expllcltly on conditioning sites
xn_3 and x n-l* Hence, the triplet closure rule is
inconsistent and cannot be valld as an exact truncation
relation for a general hierarchy. In the speclal case when
only the loss terms contribute to the kinetlc equatilon,

that 1s for totally vacant configurations of sites,

Egqn. 3.56 reduces to

4 &n 9(0]00) . ~! (3.57)

and we see that the triplet closure rule is an exact
truncatlon relation. This speclal case is, of course, Jjust
the case we consldered in an earlier section of thils Chapter.
Attempts to extend the triplet closure rule (Egn. 3.53) to

include probabilities conditioned on larger configurations
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of sites will suffer the same problems encountered in the
above analyses.

In spite of the fact that the triplet closure rule is
exact in only one case, 1t 1s a useful approximation,
particularly in those cases where the distributions involve
complicated configurations of events and vacancles. The use
of the rules in such cases can clrcumvent the necessity of
deriving and solving very complicated sets of kinetic
equations. We would expect the triplet closure rule to be
a good approximation for noncooperative events and low
event density, while 1n cases where o 1s large and the event
density high, we would expect a poorer approximation.

Figure 3.8 shows the fractional deviation, D = PExact'PTCR’
P

Exact
of the triplet closure rule from the exact solution for the

€D
distribution P(0100), as a function of the covering fraction.

Cooperative Models - Expanslon Solutilons

It 1s the purpose of thils section to solve the kinetilc
equations for the 0Oth n.n. blocking potential and 1lst n.n.
cooperative interactlion in expansion form so that the
solutions can be directly compared to the virlal expansions
obtained by Hoffman, which are discussed in the first
Chapter. 1In addition to this comparison, the convergence

properties of the expanslon solutions are investigated and
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Figure 3.8. The fractional error, D, in the P(0100) distribution arising from
the use of the triplet closure rule to approximately truncate the
kinetic hierarchy (see text for definition of D)

hTT
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a method for improving the convergence properties of such
solutions is discussed.

To obtaln exact expanslon solutions to the kinetic
model, the kinetic equations must first be written as
infinite expansions. To thls end, we can introduce the new
Variabléé Zi = l-q4, i=1,2, and 6 = 1—PE%§ into Egqns. 3.7,

3.11 and 3.14 with the following result:

dZ, (1-21)
, = 17,) 1+ b7, = cZy = CZqZyf 5 (3.58)
de _ (1-8)

and Tz, = (i-z,) {1 + bz, - ez, + ¢z %}, (3.59)

_ - _ -1
where b = —l+p11 and ¢ = 1 - 2p01+p11. The term (1 Z2)
can now be expanded in powers of Z2 and substituted into

Egqns. 3.58 and 3.59. To terms of third degree in Z, these

expansions are

g;% =1 + (1+b)Z.2 - (1+b)Zl - (2b+c+1)ZlZ2 + (1+b)222
+ bZl2 - (2b+c+l)le22 + (1+c)Z12Z2
+ (1+b)223 P (3.60)
and 99 o1 4 b2, + (1-C)Z, - 0 + (btc)Z.Z. + (1-c)Z.°
dZ2 1 2 172 2
- D2y0 = (1-0)Z,0 + (b+e)Z,2,° ~ (b+c)Z, 7,0

- (1-0)9222 + (1-0)Z23 oael . (3.61)
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The solution to Eqn. 3.60 can be obtained by first
writing Z1 as a Taylor series in Zz, differentlating the
expansion with respect to Z2, and equating the coefficlents
of the powers of Z2 of the result with coefficlents of like
powers of Z, on the right hand side of Eqn. 3.60. This
procedure gives explicit expressions for the coefficients of
22 in the original Taylor series expansion of Zl' Equation
3.61 can be solved in a similar manner to give 6 as a
function of Z2. The solutlons of these equations, to fourth

degree 1n Z2, are presented below:

I R y
and 0 =12, + %—(b-c)zz2 - %(b-Bc)Z23
+ $Zoe-do-dn2-ledyz,t 4 e (3.63)

The variables Z1 and Z2 can now be expressed as a function
of 6 by the reversion of the expansion for zz(e), and by the
substitution of this result into zl(zz). After evaluating
the coefflclents of these equations in terms of the inter-
action parameter o, we finally obtain the expansion

(explicitly written to fourth order)
q; = (1-2,) = 1-8+a6” - %(a+4a2)03

- Hom6a2-12034ayet + o0, (3.60)
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and d, = (1—Z2) = 1~e+a62 - %(a+5a2)03

- %5(2a—13a2—38a3+a4)6u b, (3.65)

The labor involved in this process increases rapidly wlth
the number of terms retained in the power series. The
expanslons themselves, however, provide easily evaluated
alternatives to the exact solutlons. Figures 3.9 and 3.10
compare the four term density expansions of aq and ds to the
exact solutlons for representative values of o. It 1s seen
that the expansions give good approximations in the regions
of low density, and the approximation 1s best for small
values of a. However, as might be expected, the approxi-
mations deviate from the exact results quite markedly near

8=1. A method for improving the convergence properties of

these expansions, known as the Padé approximant, is
discussed later in this section.

These results can now be compared to the virial
expansions obtained by Hoffman. Specifically, we examine the
ds function as an example. Since the space-filling and event
lattices for the case of a 0th n.n. blocking potential and
1st n.n. cooperative interactions are the same, the virlal
expansions, which are expansions on the event lattice, can
be applied directly. To obtain the virlal expansion of a5
we write the conditional probabllity in the following

form:
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EXACT
— — — EXPANSION -

Figure 3.9. The exact solution and the fourth degree density
expansion for g
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or \ 4

EXACT
— —— EXPANSION ™

Figure 3.10. The exact solution and the fourth degree
density expansion for a5



120

|low

(3)
d, = EZ(—)T (3.66)
(0)

AV

e}
o

We now substitute for the distributions of vacant silites with
the results of Egqn. 2.5 for n=3 and n=2 to obtaln an
expression for P in terms of distributions of configurations

of occupled sites; namely

(1) (2) (2) (3
- 1 - 3f(1) + 2£(11) + £(1-1) - £(1
92 ] ) 2)
1 - 2f(1) + £(11)

)
11) . (3.67)

Substituting for the f-functions in terms of the virial
expansions for a 0th n.n. blocking potential and 1st n.n.
interactions, we again obtain the result given in Eqn. 5.8.
We recall from Chapter 1 that the virial formallsm 1s not
restricted to one-dimensional applications, but can be used
to obtain density expansions of the dilstribution functions
for lattices of arbitrary dimensionality. We will use this
fact in our discussion of sticking coefficients in Chapter 5.
The convergence properties of these and other truncated
expansions can be improved through the use of Padé approxi-
mants (45). The Padé method seeks to approximate an exact
function, f(x), by a quotient of polynomlals whose
coeffilclents are directly related to the coefficlents of the
Taylor series expanslon of the function. We now apply the

Padé approximant technique, making use of the coefficients
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of the expansion of Egn. 3.65, to obtain better approxi-

mations for dy-

The basic Padé relation is expressed in the following

form:

Kk _ g J
x = R (x)/T,(x) + b.xY, (3.68)
L J=E+M+l J

f(x) =
k

a
0

le~1 8

k

where RL(x) is a polynomial of degree L, TM(X) is a poly-
nomial of degree M, and the final sum can be considered an
error term. The quotient of the two polynomials,
RL(x)/TM(x), is the Padé approximant. A thorough discussion
of Padé approximants and their applicatlons is presented in
a monograph by Baker (46), to which the reader is directed
for more information on this tople. We now multiply through
Eqn. 3.68 by TM(x), and, keeping terms of order < L+M, we

have that

L
£, x5 (1 axf) - I r K=o, (3.69)

where tk and r, are the kth order coefficients of TM(x) and
RL(x), respectively. For a given Taylor seriés, the Padé
approximant is calculated simply by choosing integer L and
M, multiplying out the polynomials, and equating like poWers
of x, to obtain the coefficlents of R and T in terms of the
Taylor series coefficlents, a,, of f(x) where O<k<L+M. It

1s seen that to carry out this procedure, the coefficlents



122

of the Taylor series of f(x) must be known to order L+M.
Several different approximants are now possible by making
various choices for L and M. As an empirical rule, 1t is
generally found that the best approximations are obtained
when L=M or L=M+1 (46). Since the expansion of Eqn. 3.65
is a fourth degree polynomial in 6, we choose L=M=2 in

Egqn. 3.69. This gives rise to the Padé approximant

. {(1+20)+F(-6+a+180%-03)0 + r2(8-2ba-9ha®-T203+20") 0%}

dp
23

{(1+20) +E(~2+90+180°-0>) 0-3( 4-8u-1270>-164a3-7a") 0

(3.70)

Figure 3.11 shows the approximant for a, as compared to the
exact function. Comparing these results with Fig. 3.10, we
see that the Padé method gives a much better representation

of the conditional probabllity in the large 6 region.
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CHAPTER 4., A COOPERATIVE MODEL ON A SEMI-INFINITE LATTICE

In Chapter 2 we saw that the end sites of the seml-
infinite and finite lattices can have a marked effect on the
distribution of events on the respective lattices. The
objective of this chapter i1s to consider cooperative events
on a semi-infinite lattice, where the transition probability
of the end silte can be independently varled with respect to
the transition probabillity of other lattice sites. The
hierarchy of site dependent kinetic equations for a 0Oth n.n.
blocking potential and 1lst n.n. cooperative interactions are
presented and solved from two different approaches. The
solutions are used to examine the effects of the variable
end site transition rate on the distributilon of events on
this lattice.

(n)

As in Chapter 2, we define Pi (0) to be the probability
of n adJacent vacancies with leftmost vacancy (l1.e., the one
nearest the terminal end) being at site 1. The transition
probabilities, TiJ, for all sites except site 1, are defined
as in Chapter 3. Site 1, however, has only one neighboring
site and 1s assumed to have different transition probabil-
ities, which we now define to be €9 and € These are

written 1in Arrhenius form as

-89 !
= Ae 0 s (4.1)

_Bd)l'
and €, Ae s (4.2)

™
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where ¢o' and ¢l' are the activation energies for the
transition of site 1 in the cases where site 2 1s in
condition 0 and 1, respectively. The kinetic equations for

site 1 are

(1)
dp, (0) (2) (1)
Tt_—- Z - (eo-el)Pl(Q_) - ElPl(O)’ (u'3)
(2)
dp, (0) (2) (2)
and —5— = = (150=Tgy)P1(Q)ay = (151tey)P,(0),  (4.4)

where we have made use of the truncation condition of
Egn. 3.13. These two equations form a closed set whlch we
can solve by dividing Eqns. 4.3 and 4.4 by Eqn. 3.14 and

integrating to obtaln

92
(1) n (pgytng—nq-1)
P (0) = q, 1{<no-nl>f g q Ot 0
1
exp{(1-pyy)(a-1)1} + J}, (4.5)
(2) (pg1tng)
and Pl(g) = q, exp{(l—pOl)(qz-l)}. (4.6)

Here, U =.€O/T00 and n, = El/TOO are the reduced transition
probabilities for the end site.‘

The kinetic equations for distributions beginning on
site K are similar to those for the corresponding cooperative
events on the infinite lattice (i.e., Eqns. 3.7 and 3.8),

but now are parametrized on the lattlice position. These
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equations are as follows:

(1)

ap (0) (1) (2)
—— = - TllPK(O) - (TOl-Tll)PK(Q)
(2)
= (1017711 Pk-1 (@) = (1g0=27¢
(2) :
+T11)PK_1(9_)Q23 (4'7)
(2)
aPy (D) (2) (2)
and ~“at 2 - 2T01PK<9_) - (TOO-T01)PK_1(Q)Q2

(2)

- (TOO-TOI)PK(Q)qQ. (4.8)

We now solve these equations by two different techniques.
A Semi~Infinite Lattice Model - Iteratlve Solutlons

We note that Eqns. 4.7 and 4.8 have the same general

form as Eqn. 2.75, that 1s, the equations indexed on site K

are coupled only to site K-1. We can therefore utillize the

general lterative procedure that was employed to solve

Egn. 2.75.
We begin by rewriting Eqn. 4.8 in the following form:

dx
K _
(2) 2T01t
where Xg = PK(g)e . Now, dividing this result by Eqn.

3.14 and introducing the variable Z2 = 1—q2, we obtain
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dx
K _
.a_z_z.. Z - Y(XK—l + XK)’ (4.10)

where y = (1—901). This equation can then be rearranged

to yield
dKK
., = - ykg_1s K>1. , (4.11)
YZ, -
Here, Kp = Xg e . We can solve this set of equations in

an iterative manner by first substituting Ky = (1-Z2)6,
where § = Np=Po1» into Eqn. 4.11, and solving for Ky, the
expression for k, being obtained from Eqn. 4.6. We can
repeat the process for successlive values of K. The first

four solutions are given below:

5 +1

kp = (1-2,)7, ky = grr (12" =1} 4 1,
_ Y §+2

<3 = rern(eFey (172071 - v - gpzp + L,

;
_ Y §+3
and k= TEETY(E+RY(EFsy [ (1-Z)) - 1} + (6+1¥(6+2) Zy

. 2

2
Y . A
o (1 - )2
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Generallzing these results to arbitrary K, we obtain

K—1 §+K-1 k-2 (yz. )M -1y
Ky = ot {(1-2,) -1+ 7 2
K~ K-1 2 WLy n
T (8+])
J=1
K-n-1
{Ki%:T”“’" - 1] + 1, K>1 (4.12)

T (8+3)
Jj=1

This result can be rearranged to give

n+kK-1
YZp k-1 g (-Zp) r(s-m) _ .n

kg = ¢© Y L TEED (r(a+2) -, (A13)

where I'(a) is the gamma function. Equation 4.13 1s the
general solution to Eqn. 4.11, expressed as an exponential

in Z, with correction terms contalning the site dependence

2
of the distribution. We note from thils discusslion that the

palr vacancy distribution is gilven by

(2) 2001 —YZ2
PK(Q) = (1-22) e Kio (4.14)
and hence,
(2) 20q; Vi, =Yl,  K-1 @ (-2,
Pp(0) = (1-2,) e (e FY L TR
R
The time dependence of Eqn. 4.15 is established through
-T~nt
00

the relation Z2 = l-q2 = l-e
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Sites far from the end of the lattice should be affected
very little by the termination of the lattice. Therefore, in
the limit as K+, the distribution on the semi-infinilte
lattice should go over to the corresponding distribution on

the infinlte lattice. In this limit we obtailn

K = e s (4.16)
or by Eqn. 4.14,
(2) 2p -2YZ
P(0) = (1=~2,) e 2 (4.17)

which 1s precisely the expression given in Eqn. 3.16 for the
pair vacancy distribution on the infinite lattice.

Equation 4.15 can now be substituted into Eqn. UE7)to

1

obtaln an expression for the time rate of change of PK(O)
as a function of 22 = l—q2. The resulting set of equations

is, however, much more complicated than Eqn. 4.11 and it

becomes advantageous to seek an alternate method of solution.
A Semi-Infinlte Lattice Model - Transform Solutions

A second method for solving the kilnetic equations, Egns.
4.7 and 4.8, is based on transforming the site dependence of
the kinetic equations. Thils transform method reduces the
infinite set of coupled, slte-dependent equations to a silngle
differential equation for a transform function. The specific

distributions are then obtained as an inverse transform.
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Fourler transforms offer a famillar example of a similar

transform technique.

Once again, the equations for the palr vacancy distri-

butions are solved first since they form a closed set.

Beginning with Eqn. 4.11, we define the following transforms:

£(2,2,) = 1 elkgyy (4.18)

and g(C3Z2) =

I
e~ 8
[

Tk (4.19)

where ¢ 1s a general complex transform variable. From these
relations we note that g(c,Z2) = c{f(czz) + Kl}. Trans-
forming Eqn. 4.11, we obtain

af(z,2,)

5% = - vg(g,2,) = =yg{f(g,Z2,) + (l-Zg)G}a(4-20)

2
which has the general solution

7
~-YCZ 2
£(5,2,) =e  ° {-yz f az e¥%% (1-2)% + c}.  (4.21)

0
The integration constant, C, 1s evaluated using the boundary
conditions Kg = lat t = 22 = 0, for all K. Substituting
this condition into the definition of the transform f(c,Zz),

we have that

£(g,0) = C = =2 (4.22)



131

where the magnitude of ¢ i1s now restricted to the range |g]|<1

to ensure the convergence of the transform. Equations 4.21

and 4.22 together yield

Z

2
~YtZ
£(5,2,) = e A-ye [aze™E-n)® + b (h23)

0

The palr vacancy distribution functions can now be obtalned

as Inverse transforms of this functlion using the theory of

complex variables. Thus, we have that

) 2p -YZ -
0 = (12" 0t e 2 g [ ar o Fe(e,ny),  (2w)
C

where C 1s a circular contour with radius r<l. Substituting

Eqn. 4.23 into this result we obtain

(2) 2p -YZ _
P(0) = (1-2,) ‘le 2z f ac ¢
. c
~Y&Z, : L7 8
{e (-vg f azeY%%(1-2)° + I%E)L (4.25)
0

The complex Integrals appearing in thls expressilon are
readlly evaluated by the Cauchy integral formula, or the
theory of residues (47), yielding Eqn. 4.12, as expected.
Transform solutlions for the singlet dilstributlons can
now be obtained directly from Eqn. 4.7. We can define the

following transforms on the site dependence of the singlet

vacancy distributions:
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@ 4 (1)
Z(t,a,) = 321; Pyy1(0)s (4.26)
@ 4 (2)
H(z,qp) = lec Pypp(Q)s (4.27)
= 4 (2)
and T(zsap) = ] £Py(0),
j=1
(2)
or T(z,a,) = ¢(H(z,q,) + P, (0)).

Note that from Eqn. 4.14,

-y(1l-a,) 2p
H(z,q,) = e *"a, *tr(z,a,). (4.28)
After dividing Eqn. 4.7 by Eqn. 3.14 to eliminate the
expliclt time dependence of the left side, we can transform

the resulting equations to give

az(z,q,) z(%,q,)
“da, C i1 Tq, (1'2001+911)CH(5225)
(2) P, (0)
2
H(z,q,)

a5 ?
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whlch has solutions of the form

2 —

p
11
da q

p
2(t,q,) = ay 11[k1—2p01+p11)c H(z,q)

45

+ (1-2001+pll)§ f dq a
1
92
+ (p01_911)<1+C) f dq a
1

a
° =(1+pgp) (2) C}

=P11

~N) HY— 0

(2)
P, (0)

~(1+p )
11 H(z,q)

+ (pgy=pyy)t | a g P, (Q) + (4.30)

1
Equations 4.6 and 4.23 can now be substituted into this
result and the integratilon constan?,)c, determined by
n
applying the boundary conditions PK(Q) = 1 at t=0 for all

n and K. The transform function of the singlet vacancy

distributions so obtained 1s

U

P 2 -(1+pq4) (Pgytngtl)
11 11 010
2(%,q5) = q, {T dq q [k1-2001+011)cq

v o 17Po1) (a-1) <001+n0)e(1-p01)(q-1)

+ (pol'pll)gq

v(q=1) 2p4; vz(q-1)
e

+ ((1-2001+911)Cq + (pol—pll)(l+C))e a
q
-~ L.
o = R (5.31)
1
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The inverse transform of Egqn. 4.31 is given by the contour

integral
(1) 1 _K :
Pe(0) = gy [ az ™ 2(r,ay), K22, (4.32)

C

The solution of this equation for various K leads to the

general solutions for the singlet distributions,

4
(1) p ~-(1+p- ) (pn +ny+l)
- 11 11 01 ''0
P2(O) = q2 [ dq ¢] (1-2001+pll)q
1

y(q-1) (patnn) (1-pna) (g=1)
X e + (pgy-p1q)d 0170’ 01

+y(a-1) 2p4q $
+ (pOl-pll)e q Y dQ'Q' + 1 + 1 H) (u'33)
1

and, for K»>2,

d2
(1) p -(1+p44)
P(0) = q, ™ f dq q H [[(1"2901+°11)q
1

2001 Y(Q"l)
+ (pol—pll) q e

q
- —q")k-3
x {YK ° f dq' q'® {4 4 eK_3(Y(q-14
1
q
y(a~-1) 2p - 1 K=2
+ (pg1=Pyqle q Ol{YK ! f dq' q'° (K_ggf
1

+ eK_g(Y(q-l))}] + 1, (h.34)
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where eK(x) 1s the truncated exponential series. In the
limit as K+w, Eqn. 4.34 properly reduces to Eqn. 3.20, whilch
gives the singlet vacancy distribution on the infinite
lattice.

The above distribution functlons can be utilized to
study the effect of various end site transition rates on the
lattice distributions. As previously mentioned, the end
site transition rates are independent of the transition
probabilities on the other sites of the lattice. We can
therefore adjust €9 and €9 the end site trénsition
probabilities, so as to promote or inhiblt the transition
at site 1 and examine the effect that thls has on the lattice
distributions.

For the numerical calculations of this Chapter, we can

write the reduced transition probabilities Ny and n, as

-B(¢6—2¢0)
N = €/Tgg = © (4.35)

and

-B(¢l_¢o)
ny = el/TOO =ng e = no(1+a). (b4.36)

For convenience, we have assumed that (¢i-¢6) = (¢1—¢0) in
our calculations, but this 1s not required.

Figures 4.1 and 4.2 1llustrate the effects of various
(1) (1) (1) (1)
end site transition rates on Pl(O)/Pw(O) and P2(0)/Pm(0) as
(1)
a function of P_(0). The end site transition probabilities
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in these figures are ng = eO/TOO = 0.4 and 2.5, and ng = 0.05
and 20.0, respectively. In all cases a = 5.0. The effect of
Ny is greatest at the end site, as 1s to be expected, but we
also note a somewhat smaller effect on the singlet vacancy
distribution at site 2. Figure 4.3 is a plot of the same
functions for several values of a at a flxed value of

Ng = 20.0. Here we note only small variations in the site 1
functions with o, while the ratio of distributions at site 2
is markedly affected. From these three figures we can
therefore conclude that the value of g determines the nagni-
tude of the influence of the end site and the value of o
determines the range of the influence of the end site on the
lattice distributions. Ultimately, for large values of o and
Ny s the lattice will fill sequentially from the nucleatlon at
site 1. Figure 4.4 shows the effect of the end site on pair
vacancy distribution functions beginning at sites 1, 2, 3, 4,
5 and «», For the values of Ny = 20.0 and o = 5.0, we note
that the range of influence of the end site 1s approximately
five sites.

Possible applications of this semi-infinite lattice model
are considered in Chapter 6. However, we can mention here
that the semi-infinite lattice model can be used to describe
such diverse problems as the lncreased activity of terraces
and kinks on catalytically active crystals (48) or the
influence of the condition of the end site on the helix to

random coll transitions in a polypeptide (34).
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CHAPTER 5. THE STICKING COEFFICIENT

The final test of any model 1s to compare 1its
predictions with experimental results. 1In this Chapter,
we test our kinetlc models by calculating the sticking
coefficient for molecular chemisorption as a functilon of
atomic covering fraction and temperature. We compare our
calculated results to data taken from various experimental
studlies of molecular chemisorption on metal surfaces. Of
the several phenomena which can be treated by lattice models,
we choose to consider chemisorption in detall because of the
relevance of adsorption phenomena to the modern analysis of
catalytic processes; and, in particular, because of the
avallabllity of sticking coeffleclent data. In additilon,
chemisorption provides a convenient context in which to
illustrate the effects of system dimensionality.

It 1s usually the case that adsorbed molecules exist in
one of two broadly defined adsorption states, which we refer
to as physisorbed and chemisorbed. A physisorbed molecule
1s loosely bound to the surface by van der Waals forces.
Thlis means that 1t easily desorbs and is fairly free to move
about on the surface. On the other hand, a chemisorbed
molecule 1s chemically bonded to the atoms of the surface
and for the purposes of this discussilon we assume that is
irreversibly adsorbed. We will assume that a molecule must

first be physisorbed before chemisorption occurs, as is
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wldely believed to be the usual situation (49). The sticking
coefficient is defined as the fraction of molecules which
collide with the surface and eventually become chemisorbed.
Thus, we can define the sticking coefficient in terms of the
change of the molecular covering fraction of chemilsorbed

specles. That 1s, the sticking coefficient, S, is given by

- (1)
g « 4£(1)

S (5.1)

(1)

where f(1) is the average distribution of molecules (i.e.,

chemisorption events) over all sites of the surface.

The Exact Sticking Coefficient on an

Infinite Lattice

For the first part of our analysls we assume that the
chemisorption step of the kinetic process is rate determining
and that the sticking coefficient is not a function of the
concentration of physisorbed species. This assumption will
be eliminated in a more general analysis later in this
section.

Since we are ultimately interested in the concentration
dependence of the sticking coefficient, and not its absolute

magnitude, we now define a normalized sticking coefficilent,

S', by
dfgii
S' = 56 (5.2)

00
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where S!' 1s normalized to one at t=6=0. Here, we have made
(1)
use of the fact that f(l) is site independent and the fact

that T is the rate of addition to an empty lattice (il.e.,

00
the sticking coefficient for the empty lattice). From Eqn.
2.12, we have that

(1) 1 (1)
£(1) = - rFry (1-P(0)) (5.3)
for a molecule composed of r+l atoms. Substituting this
result into the expression for the normalized sticking
coefficient, we have that
(1)

- 1 dp(0)
St = - (r+1)TOO dt ’ (5.4)

(1)
The time derivative of P(0), as given by Eqn. 3.47, when

substituted into Ean. 5.4 gives an expression for the
sticking coefficlent in terms of distributions introduced in

Chapter 3. This substitutlon yields

(r+l) (r+2)
St = pllP(Q) + 2001P(Q)
(r+3)
+ (1-2py,*+p11)P(0) - (5.5)

We now evaluate this expression for monomer (r=0) and for
dimer (r=1) adsorption, using the results from Chapter 3.
Figures 5.1 and 5.2 glve the results of these calcu-

lations for values of the interaction barameter of a = -0.8,
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Figure 5.1. Theoretical sticking coefficient curves
(8t vs 6) for the adsorption of a monomer
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-0.5, 0.0, 1.0 and 5.0. These plots clearly show the
differing effects of the attractive and repulsive inter-
actlons on the adsorption process. For values of o>o, the
activation energy l1ls lowered at sites next to an adsorbed
molecule, thereby 1lncreasing the tendency for molecules to
stick. In fact, large positive values of a result in a
normalized sticking coefficlent that can be larger than one
due to the strong attractive influence of previously adsorbed
molecules. For o0<0, adsorbed molecules ralse the adsorption
activation energy on neilghboring sites and therefore lower
the probabilility that a molecule will stick. The point at
which the sticking coefficient goes to zero is the saturation
covering fraction for the lattice. These coverages are, of
course, the same as those shown in Figs. 3.3 and 3.6 when
qr=0.

Three experimental sticking coefficlient curves for dimer
adsorption on various metal surfaces are illustrated in
Fig. 5.3. These curves are, 1ln general, typical of sticking
coefficlent curves reported in the literature and represent
the adsorptlion of molecules exhibiting repulsive and
attractive cooperative interactlons. The stickilng
coefficient curve for O, on a Ag film (50) is characterized
by the strongly negative initlal slope and positive first
derivative indicative of a strong repulsive interaction.

The adsorption of cyanogen (02N2) on Pt(110) (51), on the
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other hand, glves a sticking coefficient curve that has a
shape indicative of an attractive interaction. Cyanogen 1is,
of course, not a simple diatomic molecule; however, it 1s a
dimer and one of a few examples to exhibit a maximum in the
sticking coefficient curve. The final curve illustrated in
this figure describes the adsorption on N2 on W(100) (52)
and is characterized by a nearly zero initial slope and a
sharp drop off near 6=0.5. This extended flat region is not
seen in the model curves of Figs. 5.1 and 5.2 even though it
1s possible to choose parameters such that initial slope is
zero (see for example, Fig. 5.2, a = 1.5). Clearly, this
seemingly anomalous behavior is not directly described by
our models. However, as we shall now see, a slight general-
ization of the kinetic models, which utilizes all the
previously derived mathematical results, is adequate to
explain this behavior.
As previously mentioned, adsorbed molecules can be in

a physisorbed or a chemisorbed state. We assume that all
molecules 1nitially adsorb in the physisorbed state, and
from this state they can chemisorb or desorb. In general,
the rate of chemisorption now depends on the concentration
of physisorbed molecules. Let & be the surface concentration
of physisorbed molecules., This quantity is governed by the
kinetic equation

(1)
af(l)

, 45 (5.6)

&

= klP - kgg - k
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where P is the gas pressure. The rate constants kl and k2
govern the adsorption and desorption processes, respectively,
and dfgig/dt gives the rate at which the physisorbed state
changes due to chemisorption. Presumably, the lattlce
undergoes relaxation after each chemisorption event (e.g.,
dissipation of a local excess of energy). If such relaxation
1s very rapid compared to the rate of chemisorption, then
dfgig/dt should be just proportional to £, and we can write

Egqn. 5.6 in the form

dg _ '
a% = kP - ky& - kgES (5.7)

Here, k3 1s a rate constant serving the role of To0 in our
previous discussion, and S' is given by Eqn. 5.5. In this
equation, S'=S'(0) can be interpreted as the normalized
sticking coefficlent for a hypothetical process occurring at
some fixed value of §£. By the above argument, if relaxation
following chemisorption is rapid, S' is independent of the
chosen, fixed value of §. However, the value of £ can change

as a functlon of 8, and hence the true normallzed sticking

coefficient, S, is

s = (Bky)s' (5.8)

To find E(®), 1t is necessary to solve Eqn. 5.7, which in
turn requires knowing 6 as a function of t. The kilnetilc

equation governing 6 1s coupled to the kinetilc equations for
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other distributions of chemisorbed species, as indicated in
Egns. 3.31, 3.32,and 3.33. By the above discusslion, we must
now take the rate constants, Tij, occurring in these
equations to be proportional to §. Since & changes as a
function of time, the chemisorbed distributions will now have
a different time dependence than in the previous case.
However, since dngg/da is independent of & (l.e., the §
dependence divides out), the chemisorbed distributions, as a
function of covering fraction, are exactly the same as 1in the
previous case. This should always be true as long as lattice
relaxation following a chemisorption event occurs on a much
shorter time scale than the rate of chemisorption itself.

We could solve Egqn. 5.7 numerically, using the known
functional form of S' to evaluate the normalized sticking
coefficient, S. However, for low gas pressures we can obtailn
an approximate solution to Egn. 5.7 by invoking the steady
state approximation. That 1s, 1f £ is assumed to be small

and approximately constant, then %% = 0, and we find that

() = 2L (5.9)
£(6) = s 5.9
ki, FKSS
or, by Eqn. 5.8
' .
S = (%iy%§ : (5.10)

Here, y = k3/k2 1s the ratio of the rate of chemisorption
to the rate of desorption. We wish to emphasize that the

steady state approximation 1s not being invoked here for any
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essential reason, but simply because 1t leads to a simple
mathematical expression without altering the basic physics of
the situation. '

It should be noted from thils expression that the rate
determining step of the adsorption process determlnes the
basic shape of the stickling coefficient curve. This is a
speclfic example of the more general fact that the primary
source of Information in a kilnetic process 1s the rate
determining step. For example, at small values of y,
chemisorption 1s the rate determining step and the shape of
the sticking coeffilcilent curves 1s dominated by the effects
of the chemisorption process. In particular, in the limit
as y»0, the sticking coefficient curves are completely
determined by the chemisorption process and the results of
our irreversible models are directly applicable. In the
opposite limit, where y*», the physisorption step 1s rate
determining and over most of the range of 6 the sticking
coefficient curves contain little or no information
concerning the chemisorption step of the process. The
sticking coefflcient curves in this limit are flat and rather
featureless. It 1s 1mportant to note that for any value of
¥y, the lattice eventually fills and the effective rate of
chemisorption decreases due to the lack of availlable surface
vacancies, Ultimately, chemisorption is always the rate
1imiting step, and in this limit

S + (1+y)s’'. (5.11)
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Thus, we can always gain information about the chemlsorption
process by studying the saturation reglon of the sticking
coefflcient curves.

Figure 5.4 shows examples of the modified sticking
coefficient curves for noninteracting monomers in order to
illustrate the effect of different values of y. As has been
explained, the curves become flatter in the low density
region as y increases, but they will ultimately saturate at
the same value of 6., Thils 1s in general true since satura-
tion occurs at the value of 0 for which PES;1)= 0, where r+l
is the number of atoms in the molecule.

The quantity S also depends on the interaction between
adsorbing molecules through the parametric dependence on o of
S!'., Figures 5.5 and 5.6 illustrate the influence of these
interactions on the sticking coefficient for dimer adsorptlon
on a linear lattice in the cases where y=10 and y=100. It
is apparent from these curves that the primary influence of
the interactions 1s In the region of high covering fraction
where the probability of chemisorptlon is diminished due to
the lack of surface vacancles. Near lattlce saturation,
curves for molecules with repulsive interactions are
typically concave and reach saturation at a lower covering
fraction than do noncooperative molecules. Slightly convex

curves at saturation, with slopes more negative than for the
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Figure 5.4. The sticking coefficient, S, for a two-step
monomer adsorption mechanism, where there are
no cooperative interactions between adsorbing
molecules. Here, y 1s the ratio of the rate
of desorption to the initial rate of
chemisorption
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Flgure 5.5.

10

The sticking coefficient for a two-step dimer
adsorption mechanism. In this figure, y=10
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10

Figure 5.6. The sticking coefficient for a two-step dimer
adsorption mechanism. Here, y=100
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noncooperative case, characterize the stilcking coefficient
for molecules with attractive interactions.

In comparing the results of the above analysis with the
experimental sticking coefficient curve for the adsorption
of N, on W(100), we qulckly conclude from the general shape
of the curve that the adsorptlon proceeds through a mobile
precursor state which has a lifetime that is long campared
to the rate of chemisorption. We also conclude from the
shape of the curve near saturation that adsorbed nitrogen
molecules have a repulsive influence on the rate of chemi-
sorption at neighboring surface vacancies. These conclusions
are supported by the findings of other workers (53,54).

We note that our models reproduce the general features
of the experimental curves, however certain of thelr struc~
tural features (e.g., the peculiar hump in the cyanogen
curve) do not lie within the range of model predictions
produced by parameter variations. First, it must be
remembered that we are comparing the results of a one-
dimensional model wlth data from a basically two-dimensional
system. In some cases, most notably the adsorption onto the
troughs of crystal faces with very open geometry (18) or
preferentlial adsorption along terraces in a crystal face
(48), the one-dimensional models are perhaps appropriate.
However, in other systems thils comparison could result in

quantitative (but probably not qualitative) deviations.
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Secondly, 1t is, of course, not possible to perform an
experiment with theoretical precision. Errors due to surface
heterogeneities and lack of cleanliness, inaccuraciles in
measurements, and several other factors contribute to the
imprecision in experimental results.

Since noble gases do not chemisorb at ordinary tempera-
tures, there is little experimental data to compare against
our predictions for monatomic adsorption. However, at very
low temperatures (Vv10°K) these gases physisorb with
sufficiently long residence times (55) that the adsorption
can be considered irreversible and can be described reason-
ably well by a sticking coefficient. Since the interactions
assoclated with physisorption are weak, we would expect these

systems to have small a values.

Sticking Coefficient Density Expansions

on the Infinite Lattilce

The density expansions of the distribution functions,
given in Chapter 3 can be substituted into Egqn. 5.5 to obtain

truncated expansion approximations of the form

2

St =1 4 BO + CO° + DOS + ... (5.12)

for the sticking coefficient. These expansions, parametrized

on o, are written below for monomers and dimers:
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5" nonomen = 1 = (1-20)8=(2a+0?)8%+1(50%+203-0 ") 03
+ 72(-hoP-2h03450 418054026 + ..., (5.13)
and S'qimer = 1 = (3-20) ()+(1-30-0?)($)?

¥ %(2-6a+5a2+2a3-a“><§>3
+ i%(8-2Qa+30a2-24a3—3au+18a5+a6)(g)u

+ .. . (5.14)

In Fig. 5.7, expansions of s' through quartic density

monomer
terms (i.e., Egn. 5.13), for o values of -0.8, -0.5, 1.0 and
5.0 are plotted. Comparison with Fig. 5.1 1llustrates the
valid range of these density expansions. As expected from
the results of Chapter 3, the truncated expansion 1s best at
low densities and for small values of a.

At low molecular densitlies the sticklng coefflcient
varies linearly with the covering fraction, and hence by com-
paring the coefficient of the linear term in Egn. 5.14 with
the initial slope of the experimental curves, we can obtailn
an estimate of a. Furthermore, 1f we have experimental data
as a function of temperature, we can estimate the activation
energy. The value of o and its temperature dependence deter-
mined in this way 1s, at best, a crude estimate due to the

lack of rellabillity of the experimental data at low densitiles.
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Four term density expansions of the sticking coefficient S' for the
adsorption of a monomer with 1lst n.n. cooperative interactions
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Of course, 1f desorption competes with chemisorption, we
should use the sticking coefficient of Egqn. 5.10. By

expanding S in the density, we find that
S =1+ (===)BO + ... , (5.15)

where B 1s the coefficlent of the linear term in the density
expansion of Eqn. 5.12.

As described in Chapter 3, density expansions of the
probability distribution functions (and hence the sticking
coefficient) can be obtained by the virial expansion method.
Since thils method can be applied to a lattice of arbitrary
dimensionality, we can write an exact denslty expansion for a
two-dimensional lattlce of any desired geometry, and use the
above procedure to determine o. Since adsorption is basi-
cally a two-dimenslonal phenomenon, this 1s presumably the
appropriate way to determine o. However, the approximation
in one-dimension obtained from Egqn. 5.14 is still of interest
for comparative purposes. For the case where the atomic
sltes are arranged in a square lattice, the virlal expansion

method gives that (25) B in Egn. 5.12 is given by
B = (18-7). (5.16)

We now examline an experimental silituation for which we make

use of thils result.
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Engelhardt and Menzel (56) have studled the temperature
dependence of the chemisorption of O2 on Ag(110) (which is
one of a very few studies of this type). The (110) face of
Ag has a rectangular unit cell, and we assume that the active
adsorption sites have the same symmetry. For simplicity, we
approximate the rectangular lattice by a square lattice in

order to utilize Egqn. 5.16. On substituting the interaction

. “(¢l'¢o)
parameter o = exp{ —_ET_—_} - 1 into Egn. 5.16, we find that

B 1s glven by

-(¢q=dy)
B = %(—25+18exp{ ~—%ﬁ—g—}). (5.17)

The activation energy difference (¢l-¢o) (L.e., the
difference in the activation energy to the transition of a
site with and without the 2nd n.n. site belng occupiled) is
assumed to be temperature independent, and hence the
temperature dependence of B is determined by the factor of
1/T in the argument of the exponent. The activation energy
difference is easily calculated from the slope of the

experimental curves.

In Fig. 5.8, the temperature dependence of B is compared
to the variation in initial slope of the experimental
stlicking coefficient curves. The value of the activation
energy dlfference used in the model calculations is

(¢1-¢0) = 0.326 kcal/mole, which is the activation energy
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difference for which the theory and experiment agree at

T = 303°C. It is seeh in this figure that the general trends
in the variation 1n experimental slopes with temperature are
predicted by the model, but it falls short of accurately
representing the temperature dependence. There are at least
two possible explanations for the dilscrepancy. Flrst, the
activation energy difference could be temperature dependent.
Such a dependence could possibly arise 1f the mechanism by
which the interactions are transmltted through the lattice

1s temperature dependent. FPFor example, the chemisorption of
a molecule might affect the actlvatlion energy by altering the
local electron density, where this density, 1tself, is
temperature dependent. Second, the temperature variation
could also appear 1f the rate of desorption competes with the
rate of chemlsorption. In such a case, we should use

Egn. 5.15 to describe the sticking coeffilcient, and the
difference between experiment and theory in Fig. 5.8 can then
be ascribed to the temperature dependence of the factor of
1/(1+y). Figure 5.9 shows the temperature variation in y for
this latter case, assumlng that the first case above does not
contribute. If we can assume that this curve has some
physical content (l.e., if the observed variation in y 1s not
totally due to experimental error in the measurement in the
low density stilcking coefficient), then we note that the

sharp change in the slope of y near T = 350°C indicates a
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change 1n the difference between the activation energies for
the chemlisorption and desorption steps, and hence a change in
the adsorption mechanism. Such a mechanistic change could
possibly be attributed to a change in the active site for
chemlsorption or other changes in the chemisorbed state.

We now comment on the effects of the dimensionalilty of
the model on B. From Eqns. 5.14 and 5.16, we see that these
limiting slopes for dimers derived from the one- and two-
dimensional models are B1 = %(—3+2a) and B2 = %(-7+18a). It
1s readily apparent that the dimensionality has a quanti-
tative, but not qualitative effect. In the special case of
a=0 (the Langmuir model), the slopes are nearly the same,
i.e., By = - 3/2 and B, = - 7/4, while in the limit as a»-1
(the infinitely repulsive interaction), the slopes are
By = - 5/2 and B, = -25/4., The difference in the two slopes
can be directly attributed to the increased surface coordi-
nation number (i.e., the number of nearest neighbors) of a
slte on the two-dimenslonal lattice, as compared to the one-
dimensional lattice. The adsorption of a dimer onto the
square lattice blocks a larger number of nearest neighbor
sltes from occupation than on the linear lattice. This gives
rise to the slightly larger negative slope of the non-
cooperative case. Since the ratio of the number of 2nd n.n.
sites on the two-dimensional lattice to that of the one-

dimensional lattice 1s substantially larger than a similar
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ratio for 1lst n.n. sites, the effect of dimensionality on the
o dependence 1s even more marked. The qualitative similarity
of the form of the two initial slopes 1s due to the assump-

tion of palrwise additivity of the activation energiles.
Nucleation Effects on the Stickling Coeffilcient

It is possible to study the effects on the sticking
coefficient of nucleating adsorption on the lattice. The
simplest means of doing so 1s to randomly seed the infinite
lattice with adsorbed molecules and determine the sticking
coefficlent based on this initilal lattice state. We can
accomplish this by changing the boundary conditions which
the kinetic equatlons must satisfy; that 1s, we set qj=“
at t=0, for all J, where 0<pu<l. It 1s then possible to
truncate the kinetic hierarchy as in Chapters 2 and 3, and
solve for the sticking coeffficient. For example, if we wilsh
to randomly nucleate 0.1% of the sites, then we require that
the boundary condition qJ = 0,999 at t=0, for all J, be
satisfied. This 1s formally equivalent to allowlng the
adsorption process to begin with all cooperative inter-
actions turned off, and then turning on the interactions
when the required atomic density is reached. With this
method, however, we are not allowed the freedom of indepen-
dently varying the interactions of the nucleated sites

(1.e., in this case, the influence of all adsorbed molecules



167

is governed by o). The results obtained in this comparatively
simple manner are not qualitatively different from the results
we will obtaln when we independently vary the influence of
the nucleating sites. Therefore, having duly discussed this
method, we proceed to the more general case.

We can also model nucleation effects where the end sites
are the nucleating sites. To this end, we can define the

average sticking coefficient 1n an ensemble of lattices of

finite length as
(1)

LI
ST=N LTy JZO dt ;

where dP%%% n(0)/dt 1s the sticking coefficient of site J
3

on a lattice of length n, ro is the probability distribution
of a lattice of length n in the ensemble, and N is the
appropriate constant to normalize the sticking coefficient

(1)
to one at t=0. The singlet vacancy distributions, P{j}’n(o),

required in Eqn. 5.18 are for the finite lattice with n
sites. However, for computational simplicity, we assume
that end effects are of sufficiently short range that a
given site 1is at most influenced by the closest end site.
This means we can use probabilities on the semi-infinite
lattice 1s our calculations. Substituting the singlet
vacancy distributions on the semi-infinite lattice (i.e.,

Egns. 4.5, 4.33 and 4.34), which are not a function of n,
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into Egn. 5.18 allows us to write S' in the form

(1)
dP1+l(O)

(5.19)
0 dt

s' =N
J

Ne~18
jai
ne~38
>

Tht12

which 1s the starting point of our analysis.

The similarity of this equation to the transforms of
Chapter U4 1s evident and can be exploited to directly utililze
the transform functions in the solution of S'. To do this
we first split S' into two infinite sums in the following

manner:

oo}

dp(i{(o)
b TE

S =N L Gj,m (5.20)

Ne~138
lle~38

0 n=m

where SJ m is the kroneker delta. From the theory of complex
3

variables dj m has the well-known integral form

3

1
J,m 2m

e

s = JC dg. Cj_m, (5.21)

where C 1s a clrcular contour around the origin with radius

r<l, Substituting this result into Eqn. 5.20, we obtain

(1)
0 arP (O) 0 5
v _ N dg J j+1 -m
S § fc z {JZO T mZO Z an I’n+1]'

(5.22)

Thus, the sticking coefficient can be written in the form

dw(C’q ) ,
gt = N fc %? '“‘Hf‘g“ w(z,1), (5.23)

n

mi
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where
_ v d (1) ,
v(g,q,) = JZO t¥ Pyyy(0), (5.24)
and (Z,A) = y zJ 7 ro, .. (5.25)
N mZO an n+l

Here, w(Z,A) has been written as an explicit function of

lattice length A. In terms of the transforms defined in

Chapter 4
v(z,a,) = 2(g ) + P(l)(O) (5.26)
] 2 ,q2 1 * *

To complete the derivation, we need only to specify the

form of T the ensemble probabillity distribution of lattice
lengths, and obtain its transform, w(z,A). In the absence
cf any a priori reason to expect that one lattice length is
to be favored over another in the ensemble, we assume the
lattice lengths are randomly distributed about some mean.
Since the number of lattices in the ensemble 1s very large
and the probability for any particular lattice length is
small, the appropriate distribution of lattice lengths in

the ensemble is the Poisson distribution
A
r = 2.5 . (5.27)

where, agaln, A 1s the average lattice length. Substituting

this distribution into Egn. 5.25, we obtain
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8

© n+l
w(c,A) = X g—m Z e—A (%ITTT'. (5.28)

m=0 n

After interchangling summations and performing some simple

algebra, we obtailn
w(z,0) = g2 {57 -}, (5.29)

and hence Eqn. 5.23 can now be written as

ex/c-x.

s e A [ S Gy P 0)

(5.30)
The term -t/1-¢ of w(gz,A) does not contribute to this
equation since 1t does not contain a pole inside the contour
C. TFurther substitution of the explicit form for the
derivatives of Z(z,q,) and P{l)(o) from Eqns. 4.31 and 4.3
into Egqn. 5.30 ylelds the following expression for the
sticking coefficlent as a function of ayt

45

- P '~
N jc F o 2 A[}ll{%qe llf aq'e?d ~H)
1
(p 1+n -pq4~1)
x gt 0L 0T ((pgp=pq1)*(1-2py1+py;)a ")

a
2 '

p y(q -1) (2pyq=Pq-=1)
+q, 1t J aq' e ' Po1f11

1
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ve(q'-1)
((14)(pyy-pyq) + £(l-2pg*pq;)a )e

X

w =y (gq"=1) 4§ g pll g
{YC ? da® e R 1 A R -
1 A

N

Y(q2_1) 2901(

t e Q2 (1+C)(001'Dll)

dq' e

-+

.4, :

ACPY ~yz(q -1)
C(l—2001_p11)Q2)e YC J
1

qu + z

T-¢ (Pg1=P1q)

X

(paqtnny) Y(a,-1)
} oo, 0170’ T2 (
(pr-*nys) Y(g,-1)
+ (1_2p01+pll>qZ) + (no_nl)qz 01 0 e 2

a4

n
+ n.q 1{(n -n-) J dq' q
192 0~
1

Y(q'=1) }
e + 13]. (5.31)

'(001+n0—nl-1)

X

Some of the complex integrals of thils expression can be
directly evaluated by residue theory; we evaluate the
remaining complex integrals using a modified form of the
method of steepest descents (57). The circumstances
requiring the modification are sufficiently unusual that they

merit a brief discussion.
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In a typical application, the method of steepest des-

cents is used to evaluate the asymptotic (large A) behavior

of complex integrals of the form

I = f dz e
C

The 1dea is to pick an appropfiate contour passing through,

M(2) o(ay, (5.32)

Zqs the saddle point of f(z). If this 1s done, the major
contribution to the integral comes from the part of the
contour in the neighborhood of Zg . For large A, the
exponential functilon eAf(Z) is effectively a sharply peaked
Gaussilan along the contour near the saddle point and hence

the integral can be approximated by

Af(zo) ©

g(zg)e ~t2/2
T = ' dt e . (5.33)

00
In Egn. 5.31, however, the complex integrals have the general
form

ek/c rd K5

for which the argument of the dominating exponentlial term,
f(z) = 1/t, has no saddle point. It is therefore advan-
tageous to write the entire integrand as the argument of an
exponent to formally create a saddle point at which the

steepest descent method can be applied. The integrand,
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which we denote by expl[g(A,z)], then has the form

explg(A,z)] = exp{A/z + ] &n ¢ - & &n(l-z)
+ kz}. (5.35)

Expanding the integrand in a Taylor series about the saddle
point, cO(K), we obtain

ATA(Kk) = A J kta(k)
e O golk) e 0

(1 - gy on

f dz exp[
C n

where g(n) is the nth derivative of g with respect to z.

g™ (O, z4(0))
nl

(c-c0<m>)f}, (5.36)

e~ 8

2

For future use, we have expliciltly indicated the k dependence
of CO(K). However, thils integrand is not a Gaussian along
the contour at the saddle point because all factors in the
exponent are not scaled by A. The integrand is sharply
peaked at large A, but it 1s always skewed from a Gaussian
function. In other words, more terms of the Taylor expansion
of the argument of the exponent must be retained to provide
an accurate representation of the lntegral. To evaluate the
Integral retalning several terms of the Taylor seriles 1in the
exponent 1is a problem comparable in difficulty to the evalu-
ation of the original integral. For this reason, we approxi-

mate the integral in the following manner: The examlnation
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of Egqn. 5.15 reveals that for large A, the saddle point is
basically determined by the terms A/¢ and 2 &n(l-z) and hence
there 1s only a weak dependence of CO(K) on k. It is
therefore convenient to examine the integral I(k=0), which

from Eqn. 5.34, has the form

-A | VAT
T(k=0) = S f ar &——& | (5.37)
C

L
(1-7)
This integral can be exactly evaluated in closed form by

residue theory to yileld
I(k=0)=(r-3)%"1, (5.38)

Since the integrand of Egn. 5.34 is sharply peaked at a
point that is only weakly affected by eKE, this factor is
effectively constant on the portion of the contour near the
saddle point. Thus, we can write

KcO(K=O)

kZ~(k=0)
I=xe I(k=0) = (A-)% e O :

(5.39)
This result can be used to evaluate the complex integrals
of Egn. 5.31 that cannot be readily evaluated in closed form
by residue theory. The real integrals of Egn. 5.31 can be
numerically integrated with a twenty polnt Gauss-Legendre
iIntegration scheme as used in previous calculations.

Figure 5.10 shows the results of the evaluation of

Egn. 5.31 as described above, where A and ng have the values
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Flgure 5.10.

The influence of the lattice length and the
transition probability of the end site of a
finlte lattice on the sticking coefficient
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A=10 and 50, and n0=0.5 and 2.0. The value of a qug 12
these calculations i1s o0=1.0. In this figure 4, = e 00

1s the Independent variable, and since dy is basically a
time varlable, thils figure reflects the time evolution of
the stickilng coefflcient. The function S' can also be
easlly obtalned as a function of the average singlet vacancy
distribution, Pgé;, (and hence the average covering fraction,
B, since 8 = 1 ~ ?E%g) by numerically lntegrating the curves
of this figure to obtaln ?Eég as a functlon of Pr We note
a marked dependence of the stlcking coefficlent on the
lattice length, A. Thls depeundence is directly related to
the fraction of sites of the lattice that are influenced by
the transition rate ng* For long lattlices, the fraction of
sites influenced by the end site 1s smaller than that for
short lattlces and hence the effect of Ng on the sticklng
coefficient 1s less for the former. For example, if the
range of influence of the end site for a particular value of
ng and o is two sites, then for a fifty site lattice 4/50 or
8% of the sites are influenced by the value of g This
compares to the fact that U4/10 or U40% of a ten site lattice
would be influenced under the same circumstances. As shown
in Chapter 4, the range of the influence of the end site is
primarlily determined by the value of o and the magnitude of

the influence 1s due to no.
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CHAPTER 6. OTHER APPLICATIONS

The obJjective of thls Chapter i1s to bring together and
briefly discuss a number of examples illustrating the range
of possible applications of our models to various problems
in chemilstry and physics. Some of the suggested appllcations
are extensions of the work reviewed in Chapter 1. However,
many more are original to the best of the author's knowledge,
and, to an extent, some are speculative. Possible generall-

zations and extensions of the models are also discussed.
Surface Chemistry Applications

Our models can be applied to a number of different
problems in surface chemistry. One problem of current
importance 1s to study the activity of hydrodesulfurization
catalysts in order to gain a deeper understanding of how they
work and how thelr performance can be improved. The hydro-
desulfurization process typically Involves using a metal
oxide (58) (or metal sulfide (58)) surface to catalytically
remove sulfur from heterocycllic organlc compounds, and 1s
of particular importance to the petroleum industry. The
catalytic activity of these surfaces 1s thought to depend on
the distribution of anionic vacancles in the surface oxide
layer as illustrated in Fig. 6.1. The vacancles allow the
sulfur heterocycle to adsorb on or near the surface layer of

metal atoms which then act as a source or sink of electrons
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during the catalytic processes. For the épeoific details of
the mechanism the reader is directed to the review article by
Amberg (58).

Under normal laboratory conditions, the metal oxide
surfaces are strongly hydroxylated and are composed pri-
marily of metal hydroxide species. To create the necessary
vacancies (i.e., to activate the catalyst) the surface is
heated to give the following dehydroxylation reaction, which

is here depicted in one dimension:

OH OH OH OH OH
1 A |+
5 Hy(g) + -M-0-M-0-M- —=-> -M-0-M-0-M-
| | I
+ H,0(g) + e . (6.1)

The resulting anionic vacancy flanked by hydroxyl groups
form the postulated active site configuration of Fib, 6.1.
Presumably, this surface could alternately be prepared by
the rehydroxylation of a dehydroxylated metal oxide surface.
We are interested in studying the manner in which the
method of preparation of the surface affects the distri-
bution of active site configurations, and hence, the cata-
lytic activity of the surface. The mechanism of the hydroxy-
lation and dehydroxylation of a metal atom on a metal oxide
surface 1s known to involve the reaction (i.e., the formation
or decomposition) of one water molecule at a single metal

site (59). We can therefore define two different types of
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monomer (l.e., r=0) events to describe these reactions. The
first event 1s defined to be an adsorptlon event which
represents the hydroxylation of a metal site. 1In this case,
the probability of the active site configuration of Fig. 6.1
is nggl). The second event is defined to be a desorption
event which corresponds to the dehydroxylation of a single
metal site. In terms of desorption events, the probability
of the active site configuration is ng%o). The distribution
of adsorption events evidently describes a surface that was
prepared by rehydroxylation, while the distribution of
desorption events describes a surface that was prepared by
dehydroxylation. It may be recalled from Chapter 3 that
these two distribution functions are not calculated from the
same hierarchy of equations. The Pgigl) distribution can be
written in terms of distributions of consecutive vacant
sites, and thus it is calculated using Egqns. 3.7, 3.11, and
3.14, while ngio) is expressed in terms of a distribution
of nonconsecutive sites and hence requires the larger
hierarchy that also includes Eqns. 3.28, 3.29 and 3.30. We
therefore expect that the distribution of active site
configurations will depend to some extent on the method of
surface preparation.

In addition, we find that the cooperative influence of

a desorption event on the rate of dehydroxylation of a neigh-

boring hydroxylated site 1s not the same as the influence of
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an adsorption event on the hydroxylation of a neighborilng
vacant site. By the princilple of microscopic reversibility,
we know (7) that the activatlon energy for the transition of
a site and that of the reverse transition is related to the
potential energy of the initial and final states of the

lattice site by

Eact(0+1,x) - Eact(l+0,x) = U(l,x)-U(0,x), (6.2)

where Eact(y+z,x) is the activation energy for site tran-

sition from condition y to condition z with a lst n.n. site
in condition x. Also, U(y,x) 1s the potential energy of the
lattice site in condition y with lst n.n. site 1n condition

X. It directly follows from this result that
[Eact(0+l,0)—Eact(O+l,l)] - [Eact(l+0,0)
—Eact(l+0,l)] = AU(0)-AU(1), (6.3)

where AU(x) = U(1l,x)-U(0,x). For simplicity, we can now
assume that the change in the energy of a site due to its
occupation is unaffected by the condition of neighboring

sites, and Egn. 6.3 reduces to
[E,,(0+1,0)-E, ,(0+1,1)] = [E,_, (1+0,0)

To compare the cooperative influence of the adsorption and
desorption events on the activation energy to the occurrence

of the appropriate event on a neighboring site, we rewrite
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Eqn. 6.4 in the form
[E,,(0+1,0)-E . (0+1,1)] = - [E_,,(0+1,0)

B, (0+1,1)1, (6.5)

where 1 and 0 denote the condition of the site in terms of
the occurrence (or lack thereof) of a desorption event., From
Egn. 6.5 it is immediately apparent that the influence of a
desorption event on the activatlon energy for the dehydroxy-
lation of a neighboring site is equal in magnitude, but
opposite in sign to the influence of an adsorption event on
the activation energy for the hydroxylation of a neighboring
site. Since any entroplc effects on the rate of transition
are included 1n the pre-exponential factor A and are divided
out when we solve the kinetic equations as a function of ©
(1.e., Tij becomes pij)’ the change in activation energy
determines the change in transition rate for the appropriate
event, Thé different influence of the two types of events
on the neighboring sites can therefore be reflected in the
values of o chosen for each type of event.

Figure 6.2 illustrates the nggl) and ngio) as a
function of the density of surface hydroxyl groups for the

case where (¢1—¢0) = -0.4193 kcal/mole. It is evident

adsor
from these plots that the probability of the desorption
event configuration is greater for a given value of 6 than

of the corresponding adsorption event configuration. In
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other words, for this value of (¢l~¢0), the dehydroxylation
of a fully hydroxylated surface gives a higher density of
active site configurations than does the rehydroxylation of a
dehydroxylated surface and hence a higher catalytic activity.
This 1s to be expected because adsorption events will tend to
cluster in this case leaving a lower density of anionic va-
cancies flanked by two hydroxyl species. The desorption
events on the other hand tend to be more diffuse and hence
giving rise of a higher density of active site configura-
tions. For positive values of (¢1_¢O)adsor’ we expect that
the adsorption events will give a more favorable distribution
of active sites and this is borne out by calculations. We
can also note from these curves the covering fraction at
which the highest catalytic activity occurs. Such informa-
tion is of potential importance for determining the best way
to carry out the activation process. Another interesting
feature illustrated in the figure is the nonreversibility of
the distributions during a cyclic adsorption-desorption
process. Our model curves predict a hysteresis loop in the
event distributions when the adsorption and desorption pro-
cesses are performed under similar experimental conditions.
Our models can also be used to compare the distributions
arising from adsorption and desorption under different
ambient conditions; however, differences in the distributions

noted in this case do not constitute a hysteresis effect.
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In the case of the cycllic adsorption-desorption of
dimers, the physical difference in the boundary conditions
satisfied by the distributlions can also affect the distri-
bution of events. As we recall, dimer events saturate the
lattice at an event density of n<% or 6<l. The desorption
step immediately following the initial adsorption step
therefore does not start from a fully occupled lattice, but
rather from a lattice with 1solated vacancies. It 1s easily
seen that the surface distribution at a given covering
fraction will change with each succeeding cycle because of
the change 1in the boundary conditions. This change contlnues
until some steady-state configuration of sites 1s reached.

Experlimentally, hysteresis loops in cyclic adsorption-
desorption processes are noted in the study of the hydration
of y-alumina by Fuller and Agron (60), and of thoria by
Gammagé et al. (61). Other systems are discussed by Adamson
(55).

Our models can also be applied to other surface
chemistry and heterogeneous catalysls problems. For example,
Peri and Hensley (36) and Fuller et al. (1) have reported
theoretical studies of the surface structure or surface
composition of silica gel. The problem of determining the
surface composition of silica gel is somewhat similar to that

discussed above in that ambient conditions produce a silica

surface dominated by hydroxyl groups. On heating, the
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hydroxyl groups on two nearest neighbor silicon atoms
condense, liberating H20, and leaving an oxygen atom bridging

two silicon atoms., This 1s 1llustrated in the following

reaction:
OH OH OH OH OH OH
\/ N/, \ /
Si + Sl — Si—O—Qi + H2O(g) (6.6)
! \\ N //' ' .'l \
' \ r . \

It 1s clear that thils is the two-dimensional analogue to the
Flory model. If the event here 1s defined to be the reaction
of two neilghboring hydroxide groups, we can apply the dimer
(or r=1) cooperative model to determine the kinetic distri-
bution of bridging oxygen atoms and unreacted hydroxilde
groups. These results can then be compared to the Monte
Carlo calculations and random model results of Peri and
Hensley, and Fuller et al., discussed 1n Chapter 1.

Another application to a catalysls problem 1s the
calculation of the product distributlon arising from the
Fischer-~Tropsch synthesis. In the Flscher-Tropsch process,
adsorbed carbon monoxlde and hydrogen react to form hydro-
carbons of various chain lengths. One proposed mechanism
(55) for this procesé is 1llustrated in Fig. 6.3, and can be
briefly described as follows. Adsorbed CO molecules react
with hydrogen reducing the CO to an adsorbed methanolilc
intermediate. Two of these intermediates can then react to
form a chemisorbed ethanol species, the carbon chain length

Increases with each succeeding reaction with an intermedlate
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Figure 6.3. A proposed Fischer-Tropsch Mechanism (55)
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species. The chain can be terminated through reaction with
a hydrogen molecule. Variatilons of this basic mechanism, 1n
general, glve rise to a mixture of aclds, alcohols, and
other nydrocarbons of various carbon chaln lengths as
reaction products, depending on the conditions of the
reaction and the choice of catalytic surfaces. For example,
it has been shown (62) that on supported group 8 metals the
Fischer-Tropsch process ylelds hydrocarbons ranging from
almost pure methane on Pd to paraffinic waxes on Ru. The
event for the slimple mechanism dilscussed above 1s the
formation of a carbon-carbon bond in the chain. The distri-
bution of a sequence of adjacent events then determines the
distribution of product molecules. For example, an fggillo)
event distribution glves the probabillity of producing a
molecule containing four carbon atoms. Our models can, of
course, be used to obtain such distributions.

Of continuing interest in surface chemlstry is the
effect of promoters and poisons on the rate of chemisorptilon
or catalytilc actlvity of a surface. 1In a very general
sense, promoters and polsons are chemical specles on the
surface, or those physical features of the surface, which
act to accelerate or retard the rate of reaction. Promoters
are generally assoclated wilth lattice dlslocations, point
defects, and other surface defects (49) that accelerate

surface reactions by providing preferential locations for
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nucleation reactions. Polsons, on the other hand, are often
assoclated with molecules that occupy an actlve site or
otherwise serve to remove an actlve site from use. The
effects of promoters and poisons on a surface distribution
of events can be qualitatively described by our semi-
infinite or finite lattice models; the independent end site
transition rate 1s utilized to mimlc the effect of the
promoter or polson. Since our models are for one-dimensional
lattlices, the only type of defect we can describe 1s a polnt
defect. On the two-dimensional surface, however, there can
be a number of one-dimensional defects, such as terraces,
kinks and grain or phase boundariles, 1n addition to the
point defects. A quantitative description of the effect of
these higher dimenslonal defects, of course, requires a two-
dimensional model. Adsorption directly along the one-
dimensional defects (e.g., terraces) perhaps could be
directly described by our models.

Examples of systems where the distribution of events is
known to be effected by a promoting element are found in a
variety of experiments. In a LEED study of the high index
(1.e., stepped) crystal faces of Pt, Baron et al. (48)
report that kinks and terraces in the platinum surface have
a marked effect on the activity of the surface toward the
chemisorption of varlous hydrocarbons. Thelr results

indicate that the terraces promote surface reaction by
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providing favored sites for the adsorption and dehydro-
genation of hydrocarbons. A high concentration of kinks in
the terraces promotes the rapid decomposition of the hydro-
carbons. Hall and Rasé (63) report a strong dependence of
the catalytic activity of LiF crystals in the dehydrogenation
of ethanol on the density of lattice dislocations. Point
defects 1n the lattice of metal oxides with the scheelilfte
structure are purported to play a direct role in the
mechanlsms of olefin oxidation in the kinetic studiles
reported by Sleight and Lynn (64).

Nucleated surface reactlons do not, however, always
require a surface defect for promotion. Orent and Hansen
(65) describe a highly cooperative surface structural
rearrangement which occurs during the chemisorptlon of 02
and NO on Ru(1010). These authors report that at high
temperatures an adsorbing oxygen (or NO) molecule can inter-
act with the lattice to effect a change in the position of
several Ru atoms. The probability that thils rearrangement
occurs at a given surface cell is very small; however, once
nucleated, the rearrangement is thought to proceed rapidly

in a highly ordered manner.
Applicatlions to Other Lattice Systems

Polymer systems also form a fertlle area of application

of cooperative, irreversible, kinetic models. Furthermore,
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since such systems often can be adequately represented as
being one-dimensional, they are particularly well-sulted for
study using our models. In fact, much of the development of
one-dimensional models has been done in connection with
polymer chemistry, and applications of these models to
polymer systems are numerous 1in the literature. A fairly
comprehensilve review of these applications 1s included in
the first chapter; several applications suggested in this
section are extensions of these works. The kinetlc analysis
of polypeptide denaturation reported by McQuarrie et al. (33)
can be extended to include the effects of the finite molec-
ular length on the polymer structure with the models
developed on the finite or semi-infinite lattice. The poly-

peptide chailn is composed of monomer units with the following

form:

|
-CIJ-C- ) (6.7)
R

and takes on the structure of an o hellx with the formation
of a hydrogen bond between an amlne hydrogen on each monomer
unlt and the acidic oxygen of the third following monomer
unit on the chain. The event for this model is the forma-
tion of the hydrogen bond, and the distribution of events

determines the conformational structure of the polymer. The
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saturated lattice, in this case, represents a perfect o
helix. In a related problem, the titration of polymer aclds
or polypeptides result 1n a distributlon of ions on the
polymer chaln which affects the helical nature of the polymer
molecule. Defining the event for thils system to be the
removal of an acidic proton from a monomer unlt, we can
calculate the distribution of charged (and hence highly
solvated) groups on the molecule which can then be related

to the hellcal structure of the molecule. Finally, one
possible interdisciplinary application of our models is the
study of the adsorption of polymers onto pseudo-linear
surfaces. The adsorption of such a molecule 1s an event with
a very long range blocklng potential. Hence, an analysils in
the spilrit of that of Chapter 2, in the sectilion concerning
the infinite line, is appropriate.

Three-dimensional lattice systems offer some interesting
applications of cooperative kinetic models. For example
(66), perfect crystals of several sodium and calclum salts,
most notably CaCO

CaSOu, NaQCO and NaZSOu, are stable for

3° 3
long perilods of time. However, if the crystals are
scratched, they immediately begin to decompose along the
scratch and contilnue to react only along the interface
between the two solid phases. Chemlcal systems exhibiting

this behavior are termed topochemical. These systems are

strongly cooperative, as witnessed by the progression of the
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reaction along the line of the decomposed phase. They rely
on a promoter (here, the scratch) to nucleate the reaction,
and hence, are clearly amenable to analysis by three-
dimensional versions of our models on the finite or semi-
infinite lattice. The one-~dimensional analogue where the
nucleating feature is a point defect on the lattice can be
treated aé discussed in the last section and should give
qualitative informatlon about the process. Other chemilcal
problems that can be considered to be topochemical and well-
sulted to analysis by our models include the stability of
explosives (55), the corrosion of metal surfaces, and the
sublimation of crystalline solilds.

In addition to the topochemlical applications noted
above, higher dimensional generalizations of our models can
be used to calculate distributions arising from other
irreversible processes in a three-dimensional lattice system.
As a partlcular example, calcite, the naturally occurring

hexagonal form of CaCOB, undergoes molecular decomposition

according to the reaction

caco (s) A5 cao(s) + cOo,(e), (6.8)

and glves rise to a distribution of Ca0 throughout the
calcite crystals. The cooperative effect of a decomposed
molecule on the decomposition of a neighboring site 1s an

extremely interesting question and should be amenable to
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treatment along the llines we have developed for one-
dimenslonal systems. In the somewhat similar problem of
damage of a crystal by x-ray radiatlon, 1t should be possible
to investigate the distributlon of damaged molecules. The
investigation of cooperative solid-solld phase transitions in
a lattice and lattice melting might also be performed using
generalizations of our models and methods.

Jackson and Montroll (38) have studied the recombi-
nation of trapped nitrogen radicals in solid nitrogen. These
authors present model calculations for one-, two-, and three-
dimensional systems 1in which nitrogen radicals condense from
a gas to form a crystalline solid. They are then allowed to
randomly recombine with one nearest neighbor radical to form
a nitrogen molecule. The average number of unreacted radical
species 1s the quantity of interest. As discussed in Chapter
1, the calculations of Jackson and Montroll are not based on
kinetics and hence, are not completely appropriate to the
problem. However, by defining an event for this system to
be the recombination of two nitrogen radlcals, this system
could also be modeled along the lines we have developed to
obtain the distribution of nitrogen molecules resulting from
the irreversible kinetlc process. The similarity of this
problem to those considered by Flory and Perl and Hensley is

evident.
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In a related problem, we can consider a one-, two-, or
three~dimensional solid matrix composed of unsaturated hydro-
carbons in which a very small number of radicals have been
embedded. In this case, the radicals are assumed to be so
sparsely distributed that the reaction of two of the radicals
is unlikely. Instead, the radicals react with nelghboring
hydrocarbon molecules to create hydrocarbon radicals, which
in turn react with other hydrocarbons, thus giving rise to
addition polymerization. The polymerization continues until
chain termination results from the reaction of the radical
ends of two chains (or by reaction with the vessel walls).
There are two types of lattice problems assoclated with this
process, which are possible candldates for analysis by
methods of the type which we have discussed. The first
involves determining and controlling the distribution of
radical precursors in the matrix preparation process. This
distribution 1s clearly an important determinant of the
nature of the final polymer product. The second problem 1s
concerned with how the polymerization bonding evolves from
a given distribution of radicals. This 1s somewhat similar
to the Flscher-Tropsch problem discussed in the previous

section.
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Model Refinements

In the preceding sections we have discussed a wilde range
of possible applications for the models developed earlier in
this work and extenslons of these models. We now wish to
examine in some detall the limits of applicability of our
models and to discuss the varlous possible refinements
required to treat the problems we have consldered. It was
seen 1n the previous chapter that the stlcking coefficient
as calculated from a one-dimensional model was in good
qualitative agreement with experimental results, but the
two-dimensional verslon of thilis model somewhat improved the
quantitative agreement. Thils 1s, of course, expected since
surfaces are two-dimensional. We think that this 1is a
typlcal example of the type of qualitative information
whilch 1s gained by using a one-dimensional model to treat a
problem of higher dimensionality. For quantitatilve
conslderations, we need kinetlc equations for lattices of
higher dimensionality. These kinetlc equations have been
developed and are similar to those 1n one-dimensilon in that
they also form an infinite hierarchy of coupled differential
equations (25). As previously mentioned, these hilerarchies
cannot be truncated exactly and hence, exact, closed form
solutions cannot be obtalned. Solutions in various degrees
of approximation can be obtained for arbitrary interactlon

range and various lattice geometrles through methods similar
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to that described by Vette et al. (12) in theilr investigation
of two-dlimensilonal models for non-cooperative events. The
virial expansion formalism (25) discussed in Chapters 1, 3
and 5 provides an alternative, exact solution to the higher
dimensional models in the form of an infinite expansion.
There are features of our models, other than
dimensionality, which at present limit the physical systems
which can be quantitatively studied. One is that we have
only one type of event site, another is that we have only
one type of event. In a sense, these two restrictions are
related in that for a perfect lattice we need only consilder
the entire unit cell (and the various possible types of
sites contained therein) as a single site on which many
different types of events can occur (7). This point of view
has obvious theoretlcal advantages, but as a practical
matter, it may be more convenient to consider that there are
both different types of events and different types of sites.
A reversible model is a specifilc case where it 1s useful to
explicitly consider two different events in the form of an
event and the reverse of that event. More generally, the
lattice may not be perfect, in which case one must consider
that there is a distribution of sites on which the events of
interest can occur. This distribution could itself be formed
from an earlier lrreversible process. Examples of this are

the radlcal polymerization of hydrocarbons discussed in the
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previous section, and the cyclic hydratlon-dehydration of
various surfaces as discussed in the first section of this
chapter. Finally, an important generalization 1s when an
event occurs at more than one site. Of course, this 1s
exactly the case for the space-filling lattice discussed in
Chapter 2. However, our starting point for that discussion
was an event lattlice on which an event was described as a
transition of a single slte. It is not always possible to
define such an event lattice. For example, reversible,
dissociative dimer adsorption can give rise to atomic
distributions which cannot be described by distributions of
events occurring at a single site. Thils 1s 1llustrated in
Fig. 6.4. Kinetic equations for all these situations can be
derived using the technliques and processes we have developed
in this thesis. As might be expected, the equations increase
rapldly in complexity as the models become more general.
Some of the generalizations mentioned above have already
been considered. For example, Cohen and Reiss (10) have
considered the effect of a distribution of active and
inactive sites on the distributlion of non-cooperative events
for a one-dimensional lattlce. As previously discussed,
Glauber (2) has utilized a master equation approach to
describe the reversible kinetilics of events on a homogeneous
(L.e., only one type of site), one-dimensional lattice.

Hoffman (7) uses a similar master equation approach to
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describe reversible kinetics on a lattilce of general

dimensionality and composition.

Further generalizations of kinetic lattice models and
their applications to problems of the type we have discussed

promise to offer intriguing toplcs for further research.
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CHAPTER 7. THE ACTIVATED CHEMISORPTION OF METHANE ON
W(110): AN EXPERIMENTAL STUDY

Introduction

In thils final chapter, we describe an experimental
investigation of the vibrational state dependence of the rate
of chemisorption (i.e., the sticking coefficient) of normal
methane, CHM, on the hexagonal (110) face of crystalline
tungsten. This study was undertaken to compliment our
statistical investigation of the molecular sticking
coefficlent, as reported in Chapter 5, and to gain further
insight into the mechanism of chemisorption of polyatomic
molecules. We note at the outset that the results of our
study proved to be inconclusive because of various technical
problems. These problems, and thelr possible solutions, are
dlscussed in a later section of thils chapter.

The chemisorption of diatomic molecules on transition
metal surfaces has been studied extensively and is known to
occur via molecular dissoclation and the adsorption of the
atomic species on the surface (55). On a clean surface this
process generally occurs with a large sticking coefficient
and it 1s therefore thought that no significant activation
barrier exlsts to inhibilt dissociative adsorption. On the
other hand, the detaliled chemisorption mechanism of poly-

atomic molecules has not been as well characterized because
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of 1ts complexity. Most Iinvestlgators, however, recognize
that saturated hydrocarbons chemisorb slowly with a signifi-
cant activation barrler. For example, the chemisorption of
methane on rhodium has an activation energy of ~7 kcal/mole
(67). The molecules are presumably activated by the
population (thermal or otherwise) of thelr various internal
energy levels. It 1s of present interest to determine which
of these internal degrees of freedom are lmportant to the
activation process.

Only a few studies have been reported in which the
detailed chemisorption mechanisms of simple, saturated hydro-
carbons have been investigated. Stewart and Ehrlich (67)
report a study of activated chemisorption of methane on
rhodium in which the energy levels of normal methane and the
various deuterated 1sotopes of methane were thermally popu-
lated over the temperature range of 3OO°K§TGaSi710°K and
allowed to chemlsorb on the rhodium surface which was held
at 245°K. Essentially no chemlsorption of any of the methane
isotopes was observed until the gas temperature was in the

range 600°K<T S§710°K, at which time the rates of chemil-

Ga
sorption of all speéies were lncreased. In this temperature
range, the rate of chemisorption of CHu was V10 times that
of CDu and v3 times that of CH2D2. Thils klnetlc lsotope
effect suggests that translational and rotational energy

levels are not primarily responsible for promoting the
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activated process since the difference in translational and
rotational energy levels between the isotopic species could
not account for the large rate differences. Electronic
energy levels were also excluded on the basis that the lowest
exclted electronic state of CHu lies ¢150 kcal/mole above
the ground state, whlch is much hlgher than the measured
activation energy of ~n7 kcal/mole. Thus, the thermal popu-
lation of excited electronic levels at 600°K is negligible.
The remaining viable excitatlon mode, molecular vibrations,
was therefore determined to promote the actlivated adsorption
process. This 1s a reasonable deduction on the basis of the
energetics of the situation (the Vg vibrational mode of CH4
at 2180 em~t lies 6.24 kcal/mole above the ground vibrational
state and the actlvatlion energy for the process was
determined to be ~7 kcal/mole), and the fact that molecular
dissoclation usually involves exclted vibrational states.
To explain the large kinetic lsotope effect 1n the
vibrational activation, Stewart and Ehrlich invoke Slater's
unimolecular reaction model and propose that the vq beinding
mode 1is the critical vibration which leads to dissociation.
This analysis, however, met with only marginal success.

In a related study, H. F. Winters (68) studied the
activated chemisorption of methane on a tungsten surface by
heating the tungsten surface to temperatures in the range of

6OO°K§TSurface526OO°K. With this technique, he noted an
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increase in the rate of activated chemlsorption similar to
that of Stewart and Ehrlich, and a similar, but more marked
kinetic 1lsotope effect at the hilgher temperatures. In a
later article (69), Winters explains hils results, including
the large kilnetic isotope effect, in terms of a guantum
mechanical tunneling model for the dissociation of C-H or
C-D bond in wﬁich three adjustable parameters are utillized.
The model calculations for the vy and Vo vibrational modes
agree well with experimental results.

It 1s convincingly shown 1n the papers dilscussed above
that vibrational modes are responsible for the actlvation of
the chemisorption process; however, there 1s no evilidence
presented to support which of the modes are most effective
in promoting the process. It 1s seen from Table 7.1 that in
the thermal excltation of the vibrational energy levels, all
modes are significantly populated and i1t would therefore be
difficult to distinguish the contributions of the individual

modes 1n promoting the activated chemisorption.

Table 7.1. The thermal population of n=1 vibration levels

T, °K . vy vy v3 Yy
700 1.89 x 1073 6,48 x 102 14.57 x 10°3 1.51 x 10~2
1100 8.44 x 1073 1.03 x 107t 2.21 x 1072 2.05 x 107t
1500 1.04 x 1072 7.83 x 1072 2.82 x 10”2 1.44 x 1071
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The goal of the experliment we describe 1n this chapter
1ls to selectlvely excite Individual infrared active vibra-
tional levels of normal methane, CHu, and monitor the rate of
chemisorption on a tungsten (110) surface for each of the
levels. In this manner, we can hope to determine the

relative effectiveness of each vibrational mode in promoting

activated chemisorption.

Experimental Methods

Prelimlnary considerations

The experimental technique we utillize is conceptually
silmple. In an ultra-hilgh vacuum system we physisorb
approximately one monolayer of methane onto an atomlcally
clean tungsten surface. These molecules are vibrationally
excited by infrared radiation of frequency appropriate to
the vibrational mode under study and allowed to chemisorb.
The physisorbed methane is flashed off and the amount of
chemisorbed methane 1s determined by Auger analysis.

Preliminary to the experiment, several details must be
carefully consldered. Methane 1s a rotational spherical top
with a very nearly spherical electronic distribution.
Chemically, it is a rather lnert gas which has a normal
boiling point of 111.7°K. In order to physisorb the required
amount of methane on the surface, we have to significantly

cool the tungsten crystal. At liquid nitrogen temperatures,
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the saturation vapor pressure of methane, PO’ 1s ~15 torr.

In a typlcal gas-solld adsorption situatlion, monolayer
coverage ls attained when P/P0 > 0.05. We therefore estimate
a dosing pressure of NO.S torr will result 1n a significant
surface coverage where the crystal 1s held at ~77°K.

The lifetime, v, of the vibrationally excited molecule
on the surface and the rate of excitatlon of the molecules
determine the concentration of excited molecules on the
surface. We assume, because the methane 1s only weakly bound
to the surface, that the coupling of the vibratlonal states
of the molecule with the various surface and bulk excitations
of the solid (g.g., phonons) 1s negligible and that the lifec-
times of the excited states can be approximated by thelr gas
phase radlatlve lifetimes. The radiative lifetimes of the IR
active v, (3020 em™1) and v, (1306 em™1) modes have been
reported (70) as 0.037 seconds and 0.39 seconds,
'respectively. We can estimate the transition rates into
these states as a function of the radlation field intensity

by solving the optical kinetic equation (71)

dN 3 N

A c”I(v) A
- = (N - 4/3 N,) =—=32tfm - -2 | (7.1)
dt A 2Uwhv3T T

where NA and N are the number of molecules in state A and
the total number of molecules, respectively, and I(v) 1s the
Intensity of the radlation fleld as a function of frequency.

In Egn. 7.1 the degeneracy of state A 1s taken to be 3
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because both the v3 and vy modes are triply degenerate., The
infrared source we utilize in thils experiment is a Nernst
glower., To obtain I(v) we therefore assume our radiation
source is a blackbody at a temperature of ~v1200°K and write

Egn. 7.1 in the form

af

¢+ = 0.22(1 - 4/3 £,) (exp{hv/kT}-1) "1™

where fA = NA/N. This result can easily be solved to glve

the fraction of molecules in the v3 and vy modes; namely
£, = 0.01 (1 - e ?TP), (7.3)

3

and
£o=0.1(1- e 3%, (7.4)
\)ll

It should be remembered that these results are based on gas
phase lifetimes and transition frequencies. We 1gnore any
symmetry or energetic changes in the molecule brought about
by adsorption. The results of Eqns. 7.3 and 7.4 must
therefore be regarded as estimates. Because of the rela-
tively small fractions of excited state molecules shown
above, we expect that 1t will be necessary to lrradlate the
physisorbed molecules for as long as practically possible.

At partial pressures of gaseous contamlnants in the 10_8 to

10-10 torr range (the contaminants are primarily CO and H2

from the background gases in the vacuum system) a monolayer
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of contaminants could form in as little as 100 seconds at
10-8 torr, thus limiting the duration of the experiment to

somewhat less than five minutes.

Apparatus
The experimental system we used 1s schematlcally

depicted In Fig. 7.1l. The ultra-high vacuum system 1s a
commercial unlt from Varlan consisting of an lon-pumped,
stainless steel bell jar equilipped with an electron gun and
cylindrical mirror analyzer (CMA) for Auger analysis, UTI
quadrupole mass spectrometer (not shown), and a nude Bayard

10 torr were regularly

Alpert gauge. Pressures of 10
attainable in the bell Jar after bakeout. The mass spec-
trometer was used to determine the composition of the back-
ground atmosphere of the vacuum system.

The tungsten (110) crystal used in our work has been
used in previous experiments at this laboratory and is
described in detail elsewhere (72). Prior to its use in
this experiment, the crystal was mechanically polished, and
before each experiment run, the residual surface carbon was
removed by repeatedly reacting the crystal with oxygen and
heating untll Auger analysis 1indlcated a negligible amount
of surface carbon. This crystal was mounted in the vacuum

system on a rotary manipulator which was equipped with a

resistive element for heating the crystal to &1300°K and
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Figure 7.1. A schematic of the system used in the investigation of the activated
chemisorption of CHL¥ on W(110)
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liquid nitrogen cooling colls that allowed the crystal to be
cooled to Vv130°K. A W-Re 5%, W-Re 26% thermocouple was spot
welded to the edge of the crystal face to monitor surface
temperatures. The methane gas (Linde research grade, 99.99%
purity) was admitted into the bell Jar through an auxillary
vacuum system and a leak valve to mlnimlize the atmospherilc
contamination of the gas. As previously mentlioned, the
infrared radiation fc¢r thls experiment was provided by a
Nernst glower and admitted into the system via a CaF2
window. The appropriate v3 and vy transition frequencies
were obtained by filtering the glower radiation with bandpass

1

filters with 100 cm — bandwidth centered near the gas phase

transition frequency.

Procedure

The procedure followed in a typical experimental run can
be summarized as follows:

1) The surface was cleaned as described above.

2) The crystal was cooled to v130°K. This operation

typically took 30 to 45 minutes.

3) A "blank" Auger spectrum of the cooled crystal
was taken to determine the conditlon of the
surface prior to the physisorption step.‘

4) The methane was dosed into the bell jar ét

pressures on the order of 10—3 torr and the

resulting physisorbed layer was lrradiliated
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for three to five minutes at the desired
frequency.

5) After irradilation, the methane gas was pumped
out of the system, the physisorbed methane
was flashed off by heating the crystal to
v300°K for 30 seconds, and the increase in
surface carbon due to the chemisorption of

methane was determined by Auger analysis.
Results and Discussilon

As mentioned at the outset of this chapter, we were not
able to obtain any conclusions from this experiment because
of technical problems in the experimental procedure. The
primary problem was determined to be the contamination of
the surface from background levels of CO and H2 before the
methane was physisorbed. The blank Auger spectra (step 3
above) showed in all cases that carbon had accumulated on
the surface, presumably from chemisorbed CO, during the cool
down period in amounts that were roughly equivalent to that
contained in the physisorbed layer. The amount of chemi-
sorbed H2, of course, could not be determined by Auger
analysis; however, the H2:CO ratio in the background gases
was shown to be approximately 5:1, and we must therefore
assume that a proportional amount of H2 was also chemisorbed.

Under such surface condlitions the probabllity that a
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#ibrationally excited methane molecule will find a vacant
surface site on which to chemisorb 1s small. In addition, it
was found that because of 1nadequacies of instrumental design
the crystal could only be cooled to ~130°K, well above the
desired temperature of 77°K. The dosing pressure of 10"3
torr was also lower than the desired pressure of 0.5 torr
noted earlier. As a result, less methane was physisorbed
than expected, thereby further reducing the probabllity that
a significant amount of methane could chemisorb.

We attempted to resolve the surface contaminatilon

11

problem by lowering the system pressure into the 10° torr

range wlth more frequent and ionger bakecuts, cryogenilc
pumping, and adsorption onto a freshly deposited T1 film,
all without measurable success. Dosing pressures were
ralsed to offset the higher crystal temperatures during
physisorption; however, because of the levels of surface
contamination no increase in the amount of carbon was noted
after irradiation.

Several modifications of the existing apparatus can be
made to minimize the problems noted above. For example, it
is known that strictly ion-pumped systems have a high back-
ground level of hydrogen, whereas systems pumped by diffusion
pumps do not have this problem. The use of a diffusion pump
in conjunction with the ion-pumps of our system might help

reduce hydrogen levels. Unfortunately, CO is much more



213

difficult to remove than hydrogen, although the amount of CO
in the system might be reduced with a Ni getter. Another
important medification is to increase the contact of the
cooling colls with the manipulator to reduce cool down time,
and hence, lower the level of surface contamination.

In conclusion, we feel that the method described above
is a viable manner to study the participation of an
individual vibratlonal mode in the activated chemisorption
of methane when the cited technical problems can be overcome.
It should be noted in closing that the lack of conclusive
results from this experiment has no bearing on any of the

theoretical material presented in earlier chapters.
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